Global existence and finite time blow up for a class of semilinear wave equations on RN

[1]  Joshua Kiddy K. Asamoah,et al.  Fractal–fractional age-structure study of omicron SARS-CoV-2 variant transmission dynamics , 2022, Partial Differential Equations in Applied Mathematics.

[2]  Hongwei Zhang,et al.  Blow up at infinity of solutions for integro-differential equation , 2014, Appl. Math. Comput..

[3]  Belkacem Said-Houari,et al.  Exponential growth of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms , 2011 .

[4]  B. Said-Houari,et al.  Exponential decay for solutions to semilinear damped wave equation , 2008, 0812.3637.

[5]  Marco Squassina,et al.  Global solutions and finite time blow up for damped semilinear wave equations ? ? The first author w , 2006 .

[6]  Yong Zhou,et al.  A blow-up result for a nonlinear wave equation with damping and vanishing initial energy in (M, d) , 2005, Appl. Math. Lett..

[7]  N. Karachalios,et al.  Global existence and blow-up results for some nonlinear wave equations on {$\mathbb R^N$} , 2001, Advances in Differential Equations.

[8]  H. Levine,et al.  Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy , 2000 .

[9]  Grozdena Todorova,et al.  Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms , 2000 .

[10]  Grozdena Todorova,et al.  Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms , 1999 .

[11]  Enzo Vitillaro,et al.  Global Nonexistence Theorems for a Class of Evolution Equations with Dissipation , 1999 .

[12]  N. Karachalios,et al.  Existence of a Global Attractor for Semilinear Dissipative Wave Equations on RN , 1999 .

[13]  Howard A. Levine,et al.  Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation , 1998 .

[14]  J. Serrin,et al.  Global Nonexistence for Abstract Evolution Equations with Positive Initial Energy , 1998 .

[15]  Michael V. Klibanov,et al.  Global convexity in a three-dimensional inverse acoustic problem , 1997 .

[16]  K. Ono On Global Existence, Asymptotic Stability and Blowing Up of Solutions for Some Degenerate Non‐linear Wave Equations of Kirchhoff Type with a Strong Dissipation , 1997 .

[17]  K. J. Brown,et al.  Global bifurcation results for a semilinear elliptic equation on all of $\mathbb{R}^N$ , 1996 .

[18]  Vladimir Georgiev,et al.  Existence of a Solution of the Wave Equation with Nonlinear Damping and Source Terms , 1994 .

[19]  Kosuke Ono,et al.  Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations , 1993 .

[20]  M. Grillakis Regularity and asymptotic behavior of the wave equation with a critical nonlinearity , 1990 .

[21]  Stuart S. Antman,et al.  The Equations for Large Vibrations of Strings , 1980 .

[22]  H. Levine Instability and Nonexistence of Global Solutions to Nonlinear Wave Equations , 1974 .

[23]  Howard A. Levine,et al.  Some Additional Remarks on the Nonexistence of Global Solutions to Nonlinear Wave Equations , 1974 .

[24]  Hua Chen,et al.  Global existence, uniform decay and exponential growth for a class of semi-linear wave equation with strong damping , 2013 .

[25]  Barry Simon,et al.  Methods of modern mathematical physics. III. Scattering theory , 1979 .

[26]  L. Sirovich,et al.  Partial Differential Equations , 1941 .