Engineering Active Sites of 2D Materials for Active Hydrogen Evolution Reaction

[1]  S. Kim,et al.  1T’ Re x Mo 1− x S 2 –2H MoS 2 Lateral Heterojunction for Enhanced , 2022, Advanced Functional Materials.

[2]  Jeunghee Park,et al.  WSe2-VSe2 Alloyed Nanosheets to Enhance the Catalytic Performance of Hydrogen Evolution Reaction. , 2022, ACS nano.

[3]  P. Ajayan,et al.  Piezoelectricity across 2D Phase Boundaries , 2022, Advanced materials.

[4]  Yuanhua Lin,et al.  Mechanically Induced Highly Efficient Hydrogen Evolution from Water over Piezoelectric SnSe nanosheets. , 2022, Small.

[5]  Felipe Palou Larrañaga,et al.  Collective wind farm operation based on a predictive model increases utility-scale energy production , 2022, Nature Energy.

[6]  Shunfang Li,et al.  A subtle functional design of hollow CoP@MoS2 hetero-nanoframes with excellent hydrogen evolution performance , 2021, Materials & Design.

[7]  Yonas Assefa Eshete,et al.  Heterophase Boundary for Active Hydrogen Evolution in MoTe2 , 2021, Advanced Functional Materials.

[8]  Dongyun Chen,et al.  Enhanced piezocatalysis of polymorphic few-layered MoS2 nanosheets by phase engineering , 2021, Nano Energy.

[9]  M. Batzill,et al.  Thermal Phase Control of Two-Dimensional Pt-Chalcogenide (Se and Te) Ultrathin Epitaxial Films and Nanocrystals , 2021, Chemistry of Materials.

[10]  J. Timperley Why fossil fuel subsidies are so hard to kill , 2021, Nature.

[11]  D. Mondal,et al.  Mitrofanovite Pt3Te4: A Topological Metal with Termination-Dependent Surface Band Structure and Strong Spin Polarization , 2021, ACS nano.

[12]  Li-Min Wang,et al.  Unveiling the Mechanisms Ruling the Efficient Hydrogen Evolution Reaction with Mitrofanovite Pt3Te4 , 2021, The journal of physical chemistry letters.

[13]  J. Luxa,et al.  Comparison between layered Pt3Te4 and PtTe2 for electrocatalytic reduction reactions , 2021, FlatChem.

[14]  Xi Wang,et al.  Modulating 3d Orbitals of Ni Atoms on Ni‐Pt Edge Sites Enables Highly‐Efficient Alkaline Hydrogen Evolution , 2021, Advanced Energy Materials.

[15]  Chao Zhu,et al.  MoTe2: Semiconductor or Semimetal? , 2021, ACS nano.

[16]  J. Jewell,et al.  National growth dynamics of wind and solar power compared to the growth required for global climate targets , 2021, Nature Energy.

[17]  Minghong Wu,et al.  Boron Nanosheet-Supported Rh Catalysts for Hydrogen Evolution: A New Territory for the Strong Metal-Support Interaction Effect , 2021, Nano-micro letters.

[18]  Heejun Yang,et al.  Active hydrogen evolution on the plasma-treated edges of WTe2 , 2021 .

[19]  C. Ku,et al.  Hydrogen bubble-assisted growth of Pt3Te4 for electrochemical catalysts , 2021 .

[20]  G. Luderer,et al.  Potential and risks of hydrogen-based e-fuels in climate change mitigation , 2021, Nature Climate Change.

[21]  Zhemin Shen,et al.  Distance synergy of single Ag atoms doped MoS2 for hydrogen evolution electrocatalysis , 2021 .

[22]  Jiung Cho,et al.  Nanoporous Silver Telluride for Active Hydrogen Evolution. , 2021, ACS nano.

[23]  J. Zhong,et al.  Robust transport of charge carriers in in-plane 1T′-2H MoTe2 homojunctions with ohmic contact , 2021, Nano Research.

[24]  Jiung Cho,et al.  Mitrofanovite, Layered Platinum Telluride, for Active Hydrogen Evolution. , 2020, ACS applied materials & interfaces.

[25]  Sung Youb Kim,et al.  Design of 2D Layered Catalyst by Coherent Heteroepitaxial Conversion for Robust Hydrogen Generation , 2020, Advanced Functional Materials.

[26]  Yuting Luo,et al.  Modulating Electronic Structure of Monolayer Transition Metal Dichalcogenides by Substitutional Nb‐Doping , 2020, Advanced Functional Materials.

[27]  Chunzhong Li,et al.  Synergistic Effect of Platinum Single Atoms and Nanoclusters Boosting Electrocatalytic Hydrogen Evolution , 2020, CCS Chemistry.

[28]  Sonja van Renssen The hydrogen solution? , 2020, Nature Climate Change.

[29]  Lei Shen,et al.  High-Throughput Identification of Exfoliable Two-Dimensional Materials with Active Basal Planes for Hydrogen Evolution , 2020 .

[30]  Jun-Ho Lee,et al.  Role of anionic vacancy for active hydrogen evolution in WTe2 , 2020, Applied Surface Science.

[31]  Jun-Ho Lee,et al.  Basal-Plane Catalytic Activity of Layered Metallic Transition Metal Ditellurides for the Hydrogen Evolution Reaction , 2020, Applied Sciences.

[32]  Y. Chai,et al.  Enhanced Electrocatalytic Hydrogen Evolution Activity in Single-Atom Pt-Decorated VS2 Nanosheets. , 2020, ACS nano.

[33]  C. Felser,et al.  Descriptor for Hydrogen Evolution Catalysts Based on the Bulk Band Structure Effect , 2020, ACS catalysis.

[34]  C. Felser,et al.  Heterogeneous catalysis at the surface of topological materials , 2020 .

[35]  Wei Li,et al.  Freestanding Single-Atom-Layer Pd-Based Catalysts: Oriented Splitting of Energy Bands for Unique Stability and Activity , 2020, Chem.

[36]  R. Li,et al.  Author Correction: Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction , 2019, Nature Communications.

[37]  Hyunjung Shin,et al.  In-operando stacking of reduced graphene oxide for active hydrogen evolution. , 2019, ACS applied materials & interfaces.

[38]  Qinghua Zhang,et al.  Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis , 2019, Nature Communications.

[39]  Núria López,et al.  Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals , 2019, Nature Communications.

[40]  Youyong Li,et al.  Activating the MoS2 Basal Planes for Electrocatalytic Hydrogen Evolution by 2H/1T' Structural Interface. , 2019, ACS applied materials & interfaces.

[41]  Seokhoon Choi,et al.  Reduced graphene oxide‐based materials for electrochemical energy conversion reactions , 2019, Carbon Energy.

[42]  L. Feldman,et al.  Single Atomic Vacancy Catalysis. , 2019, ACS nano.

[43]  Yonas Assefa Eshete,et al.  Vertical Heterophase for Electrical, Electrochemical, and Mechanical Manipulations of Layered MoTe2 , 2019, Advanced Functional Materials.

[44]  Robert Sinclair,et al.  Magnetization switching using topological surface states , 2019, Science Advances.

[45]  Jun-Ho Lee,et al.  Hybrid catalyst with monoclinic MoTe2 and platinum for efficient hydrogen evolution , 2019, APL Materials.

[46]  C. Felser,et al.  Dirac Nodal Arc Semimetal PtSn4: An Ideal Platform for Understanding Surface Properties and Catalysis for Hydrogen Evolution , 2019, Angewandte Chemie.

[47]  Qi Jie Wang,et al.  Self-gating in semiconductor electrocatalysis , 2019, Nature Materials.

[48]  P. Ajayan,et al.  Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution , 2019, Nature Energy.

[49]  Yao Zhou,et al.  Recent progress in theoretical and computational investigations of structural stability and activity of single-atom electrocatalysts , 2019, Progress in Natural Science: Materials International.

[50]  M. Bechelany,et al.  Role of Sulfur Vacancies and Undercoordinated Mo Regions in MoS2 Nanosheets toward the Evolution of Hydrogen. , 2019, ACS nano.

[51]  M. Neurock,et al.  Field Effect Modulation of Electrocatalytic Hydrogen Evolution at Back-Gated Two-Dimensional MoS2 Electrodes. , 2019, Nano letters.

[52]  P. Ajayan,et al.  Discovering superior basal plane active two-dimensional catalysts for hydrogen evolution , 2019, Materials Today.

[53]  Qiyuan He,et al.  Strong Charge Transfer at 2H-1T Phase Boundary of MoS2 for Superb High-Performance Energy Storage. , 2019, Small.

[54]  Hua Yu,et al.  Boundary activated hydrogen evolution reaction on monolayer MoS2 , 2019, Nature Communications.

[55]  K. Amine,et al.  Rational Design of Graphene‐Supported Single Atom Catalysts for Hydrogen Evolution Reaction , 2019, Advanced Energy Materials.

[56]  Qiuju Li,et al.  Revealing Activity Trends of Metal Diborides Toward pH‐Universal Hydrogen Evolution Electrocatalysts with Pt‐Like Activity , 2018, Advanced Energy Materials.

[57]  N. Kotov,et al.  Best Practices for Reporting Electrocatalytic Performance of Nanomaterials. , 2018, ACS nano.

[58]  Evan C. Wegener,et al.  Identification of active sites on supported metal catalysts with carbon nanotube hydrogen highways , 2018, Nature Communications.

[59]  L. Tapasztó,et al.  Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions , 2018, Nature Chemistry.

[60]  S. Dou,et al.  Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review , 2018, Advanced Functional Materials.

[61]  Zijing Ding,et al.  Observation of Gap Opening in 1T' Phase MoS2 Nanocrystals. , 2018, Nano letters.

[62]  S. Liou,et al.  Carbon‐Tailored Semimetal MoP as an Efficient Hydrogen Evolution Electrocatalyst in Both Alkaline and Acid Media , 2018, Advanced Energy Materials.

[63]  Shaojun Guo,et al.  Atomic‐Scale Core/Shell Structure Engineering Induces Precise Tensile Strain to Boost Hydrogen Evolution Catalysis , 2018, Advanced materials.

[64]  Z. Zuo,et al.  Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution , 2018, Nature Communications.

[65]  Xingbo Ge,et al.  Highly dispersed NiCoP nanoparticles on carbon nanotubes modified nickel foam for efficient electrocatalytic hydrogen production , 2017 .

[66]  Albert V. Davydov,et al.  The structural phases and vibrational properties of Mo1−xWxTe2 alloys , 2017, 2d materials.

[67]  Hua Yu,et al.  Argon Plasma Induced Phase Transition in Monolayer MoS2. , 2017, Journal of the American Chemical Society.

[68]  Yumin Zhang,et al.  Synergistic Phase and Disorder Engineering in 1T‐MoSe2 Nanosheets for Enhanced Hydrogen‐Evolution Reaction , 2017, Advanced materials.

[69]  G. Duscher,et al.  Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe2 , 2017 .

[70]  V. Shenoy,et al.  Janus Monolayer Transition-Metal Dichalcogenides. , 2017, ACS nano.

[71]  Deji Akinwande,et al.  Recent development of two-dimensional transition metal dichalcogenides and their applications , 2017 .

[72]  Jun-Ho Lee,et al.  Active hydrogen evolution through lattice distortion in metallic MoTe2 , 2017 .

[73]  Claudia Felser,et al.  Weyl Semimetals as Hydrogen Evolution Catalysts , 2017, Advanced materials.

[74]  G. Guo,et al.  Enabling Colloidal Synthesis of Edge-Oriented MoS2 with Expanded Interlayer Spacing for Enhanced HER Catalysis. , 2017, Nano letters.

[75]  N. Watanabe,et al.  Potentially exploitable supercritical geothermal resources in the ductile crust , 2017 .

[76]  Gautam Gupta,et al.  The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. , 2016, Nature materials.

[77]  Martin Pumera,et al.  Layered Platinum Dichalcogenides (PtS2, PtSe2, and PtTe2) Electrocatalysis: Monotonic Dependence on the Chalcogen Size , 2016 .

[78]  Suyeon Cho,et al.  Bandgap opening in few-layered monoclinic MoTe2 , 2015, Nature Physics.

[79]  Haotian Wang,et al.  Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution , 2015, Nano Research.

[80]  A. Vojvodić,et al.  Electronic Structure Effects in Transition Metal Surface Chemistry , 2014, Topics in Catalysis.

[81]  Tao Zhang,et al.  Single-atom catalysts: a new frontier in heterogeneous catalysis. , 2013, Accounts of chemical research.

[82]  Marc T. M. Koper,et al.  Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis , 2013 .

[83]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[84]  H. Damon Matthews,et al.  The proportionality of global warming to cumulative carbon emissions , 2009, Nature.

[85]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[86]  Thomas Bligaard,et al.  Trends in the exchange current for hydrogen evolution , 2005 .

[87]  Jun Li,et al.  Au20: A Tetrahedral Cluster , 2003, Science.

[88]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.