The cognitive architecture of a robotic salesman

This paper describes a robotics cognitive architecture for social robots named CORTEX. This architecture integrates different levels of abstraction (from basic geometry to high-level predicates) into a unique Deep Space Representation (DSR) that different agents interface. These agents update the contents of the DSR with new data from the outer world, and execute, plan and design behaviours. The design of CORTEX as an unified deep representation allows to fit both the subsymbolic processing and flexibility requirements of robot control. In this paper a first implementation of CORTEX has been integrated into Gualzru, a robotic salesman, and tested in real scenarios. Results show that this cognitive architecture allows this robot to adequately execute its use case, and that it has a promising adaptability to achieve new tasks and be used in new scenarios.

[1]  桐山 伸也 "The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind," Marvin Minsky, Simon & Schuster, 2006(私のすすめるこの一冊,コーヒーブレイク) , 2007 .

[2]  Rick Grush,et al.  The emulation theory of representation: Motor control, imagery, and perception , 2004, Behavioral and Brain Sciences.

[3]  J. P. Bandera,et al.  Multimodal Interaction with Loki , 2022 .

[4]  Daniel Borrajo,et al.  PELEA: a Domain-Independent Architecture for Planning, Execution and Learning , 2012 .

[5]  Matti Pietikäinen,et al.  Performance evaluation of texture measures with classification based on Kullback discrimination of distributions , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[6]  Matthias Scheutz,et al.  Systematic Integration of Cognitive and Robotic Architectures , 2012 .

[7]  Lyle N. Long,et al.  A cognitive robotic system based on the soar cognitive architecture for mobile robot navigation, search, and mapping missions , 2011 .

[8]  Damian M. Lyons,et al.  ADAPT: A Cognitive Architecture for Robotics , 2004, ICCM.

[9]  Aaron Sloman,et al.  Long Term Requirements for Cognitive Robotics , 2006 .

[10]  Nico Blodow,et al.  The Assistive Kitchen — A demonstration scenario for cognitive technical systems , 2007, RO-MAN 2008 - The 17th IEEE International Symposium on Robot and Human Interactive Communication.

[11]  Ricardo A. Téllez,et al.  Controlling a General Purpose Service Robot By Means of a Cognitive Architecture , 2013, AIC@AI*IA.

[12]  G. Reeke Marvin Minsky, The Society of Mind , 1991, Artif. Intell..

[13]  Kristinn R. Thórisson,et al.  Cognitive Architectures and Autonomy: A Comparative Review , 2012, J. Artif. Gen. Intell..

[14]  John E. Laird,et al.  Cognitive Robotics Using the Soar Cognitive Architecture , 2012, CogRob@AAAI.

[15]  E. Gat On Three-Layer Architectures , 1997 .

[16]  Luis J. Manso,et al.  Testing a Fully Autonomous Robotic Salesman in Real Scenarios , 2015, 2015 IEEE International Conference on Autonomous Robot Systems and Competitions.

[17]  Salvatore Gaglio,et al.  A cognitive architecture for robot self-consciousness , 2008, Artif. Intell. Medicine.

[18]  D. Ganesha,et al.  Review on Cognitive Architectures , 2017 .

[19]  Luis J. Manso,et al.  RoboComp: A Tool-Based Robotics Framework , 2010, SIMPAR.

[20]  Matthias Scheutz,et al.  Computational Mechanisms for Mental Models in Human-Robot Interaction , 2013, HCI.

[21]  Claude Sammut When Do Robots Have to Think , 2012 .

[22]  Claude Sammut,et al.  A Cognitive Architecture for Autonomous Robots , 2012 .

[23]  Edwin Olson,et al.  AprilTag: A robust and flexible visual fiducial system , 2011, 2011 IEEE International Conference on Robotics and Automation.

[24]  Owen Holland,et al.  The role of the predicted present in artificial and natural cognitive systems , 2011, BICA.

[25]  Pattie Maes,et al.  The agent network architecture (ANA) , 1991, SGAR.

[26]  Hooman Samani,et al.  Cognitive Robotics , 2015, MIWAI.

[27]  G. Orban,et al.  Observing Others: Multiple Action Representation in the Frontal Lobe , 2005, Science.

[28]  Pat Langley,et al.  Cognitive architectures: Research issues and challenges , 2009, Cognitive Systems Research.

[29]  Frederick Jelinek,et al.  Statistical methods for speech recognition , 1997 .

[30]  Owen Holland,et al.  Robots With Internal Models A Route to Machine Consciousness , 2003 .

[31]  Luis Jesús Manso Fernández-Arguelles,et al.  Toward Social Cognition in Robotics: Extracting and Internalizing Meaning from Perception , 2014 .

[32]  M. Minsky The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind , 2006 .

[33]  Heinz Wörn,et al.  Cognitive Robotics in Industrial Environments , 2012 .

[34]  Gerhard Lakemeyer,et al.  Cognitive Robotics , 2008, Handbook of Knowledge Representation.

[35]  Richard Alan Peters,et al.  A Parallel Distributed Cognitive Control System for a Humanoid Robot , 2004, Int. J. Humanoid Robotics.

[36]  Michael Beetz,et al.  ORO, a knowledge management platform for cognitive architectures in robotics , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[37]  Laura M. Hiatt,et al.  A Cognitive Model of Theory of Mind , 2010 .

[38]  Paul Taylor,et al.  The architecture of the Festival speech synthesis system , 1998, SSW.

[39]  Ah-Hwee Tan,et al.  Integrated cognitive architectures: a survey , 2007, Artificial Intelligence Review.

[40]  Koen V. Hindriks,et al.  An Agent-Based Cognitive Robot Architecture , 2012, ProMAS.

[41]  Bernhard Hommel,et al.  A computational model of perception and action for cognitive robotics , 2011, Cognitive Processing.

[42]  John R. Anderson,et al.  The Past, Present, and Future of Cognitive Architectures , 2010, Top. Cogn. Sci..

[43]  Wlodzislaw Duch,et al.  Cognitive Architectures: Where do we go from here? , 2008, AGI.

[44]  Anand S. Rao,et al.  BDI Agents: From Theory to Practice , 1995, ICMAS.