Three-parameter prestack seismic inversion based on L1-2 minimization

Prestack inversion has become a common approach in reservoir prediction. At present, the critical issue in the application of seismic inversion is the estimation of elastic parameters in the thin layers and weak reflectors. To improve the resolution and the accuracy of the inversion results, we introduced the difference of [Formula: see text] and [Formula: see text] norms as a nearly unbiased approximation of the sparsity of a vector, denoted as the [Formula: see text] norm, to the prestack inversion. The nonconvex penalty function of the [Formula: see text] norm can be decomposed into two convex subproblems via the difference of convex algorithm, and each subproblem can be solved efficiently by the alternating direction method of multipliers. Compared with the [Formula: see text] norm regularization, the [Formula: see text] minimization can reconstruct reflectivities more accurately. In addition, the [Formula: see text]-[Formula: see text] predictive filtering was introduced to guarantee the lateral continuity of the location and the amplitude of the reflectivity series. The generalized linear inversion and [Formula: see text]-[Formula: see text] predictive filtering are combined for stable elastic impedance inversion results, and three parameters of P-wave velocity, S-wave velocity, and density can be inverted with the Bayesian linearized amplitude variation with offset inversion. The inversion results of synthetic and real seismic data demonstrate that the proposed method can effectively improve the resolution and accuracy of the inversion results.

[1]  Yangkang Chen,et al.  Damped multichannel singular spectrum analysis for 3D random noise attenuation , 2016 .

[2]  Mrinal K. Sen,et al.  Enforcing smoothness and assessing uncertainty in non‐linear one‐dimensional prestack seismic inversion , 2006 .

[3]  Jack Xin,et al.  Computational Aspects of Constrained L 1-L 2 Minimization for Compressive Sensing , 2015, MCO.

[4]  Vivek K. Goyal,et al.  Transform-domain sparsity regularization for inverse problems in geosciences , 2009, GEOPHYSICS.

[5]  J. Claerbout,et al.  Incorporating geologic information into reflection tomography , 2004 .

[6]  Mauricio D. Sacchi,et al.  High‐resolution velocity gathers and offset space reconstruction , 1995 .

[7]  Maryam Hadavand-Siri Multivariate Stochastic Seismic Inversion with Adaptive Sampling , 2017 .

[8]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[9]  Yangkang Chen,et al.  L1−2 minimization for exact and stable seismic attenuation compensation , 2018 .

[10]  F. Delprat-Jannaud,et al.  WHAT INFORMATION ON THE EARTH MODEL DO REFLECTION TRAVEL TIMES PROVIDE , 1992 .

[11]  Le Thi Hoai An,et al.  A D.C. Optimization Algorithm for Solving the Trust-Region Subproblem , 1998, SIAM J. Optim..

[12]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[13]  Adam Pidlisecky,et al.  Prestack Structurally Constrained Impedance Inversion , 2018 .

[14]  Yangkang Chen,et al.  Unveiling the signals from extremely noisy microseismic data for high-resolution hydraulic fracturing monitoring , 2017, Scientific Reports.

[15]  Rui Zhang,et al.  Seismic sparse-layer reflectivity inversion using basis pursuit decomposition , 2011 .

[16]  Mauricio D. Sacchi,et al.  High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy , 2013 .

[17]  Clayton V. Deutsch,et al.  Multivariate stochastic seismic inversion with adaptive sampling , 2018, GEOPHYSICS.

[18]  S. M. Doherty,et al.  Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data , 2000 .

[19]  Mrinal K. Sen,et al.  A pre-stack basis pursuit seismic inversion , 2012 .

[20]  Yanghua Wang Seismic trace interpolation in the f‐x‐y domain , 2002 .

[21]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[22]  L. Canales Random Noise Reduction , 1984 .

[23]  P. Connolly,et al.  Stochastic inversion by matching to large numbers of pseudo-wells , 2016 .

[24]  W. Gander,et al.  A D.C. OPTIMIZATION ALGORITHM FOR SOLVING THE TRUST-REGION SUBPROBLEM∗ , 1998 .

[25]  Ming Yan,et al.  Fast L1–L2 Minimization via a Proximal Operator , 2016, Journal of Scientific Computing.

[26]  Jack Xin,et al.  A Method for Finding Structured Sparse Solutions to Nonnegative Least Squares Problems with Applications , 2013, SIAM J. Imaging Sci..

[27]  Mauricio D. Sacchi,et al.  Multicomponent f-x seismic random noise attenuation via vector autoregressive operators , 2012 .

[28]  Mauricio D. Sacchi,et al.  High-resolution wave-equation amplitude-variation-with-ray-parameter (AVP) imaging with sparseness constraints , 2007 .

[29]  A. Tikhonov,et al.  Use of the regularization method in non-linear problems , 1965 .

[30]  Sanyi Yuan,et al.  Multichannel spatially correlated reflectivity inversion using block sparse Bayesian learning , 2017 .

[31]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[32]  Sanyi Yuan,et al.  Simultaneous multitrace impedance inversion with transform-domain sparsity promotionStructures — Exploring impedance inversion , 2015 .

[33]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[34]  Guangmin Hu,et al.  A data-driven amplitude variation with offset inversion method via learned dictionaries and sparse representation , 2018, GEOPHYSICS.

[35]  Subhashis Mallick,et al.  AVO and elastic impedance , 2001 .

[36]  P. Connolly,et al.  Elastic impedance , 2001 .

[37]  Tong Zhang,et al.  Analysis of Multi-stage Convex Relaxation for Sparse Regularization , 2010, J. Mach. Learn. Res..

[38]  Milton J. Porsani,et al.  Seismic trace interpolation using half-step prediction filters , 1999 .

[39]  Henning Omre,et al.  Bayesian closed-skew Gaussian inversion of seismic AVO data for elastic material properties , 2010 .

[40]  Parvaneh Karimi,et al.  Structure-constrained relative acoustic impedance using stratigraphic coordinates , 2015 .

[41]  P. Connolly,et al.  Calibration And Inversion of Non-Zero Offset Seismic , 1998 .

[42]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[43]  Adam Pidlisecky,et al.  Multitrace impedance inversion with lateral constraints , 2015 .

[44]  T. Hansen,et al.  Inverse problems with non-trivial priors: efficient solution through sequential Gibbs sampling , 2012, Computational Geosciences.

[45]  Claude Brezinski,et al.  Error estimates for linear systems with applications to regularization , 2008, Numerical Algorithms.

[46]  T. P. Dinh,et al.  Convex analysis approach to d.c. programming: Theory, Algorithm and Applications , 1997 .

[47]  Yangkang Chen,et al.  Iterative Deblending of Simultaneous-Source Seismic Data With Structuring Median Constraint , 2018, IEEE Geoscience and Remote Sensing Letters.

[48]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[49]  Tapan Mukerji,et al.  Seismic inversion combining rock physics and multiple-point geostatistics , 2008 .

[50]  Yangkang Chen,et al.  Random noise attenuation by f-x empirical mode decomposition predictive filtering , 2014 .

[51]  Jack Xin,et al.  Minimization of ℓ1-2 for Compressed Sensing , 2015, SIAM J. Sci. Comput..

[52]  Ting-Zhu Huang,et al.  Truncated l1-2 Models for Sparse Recovery and Rank Minimization , 2017, SIAM J. Imaging Sci..

[53]  Ting Kei Pong,et al.  Further properties of the forward–backward envelope with applications to difference-of-convex programming , 2016, Comput. Optim. Appl..

[54]  Yasuko Mori,et al.  Measurement of varicella-zoster virus (VZV)-specific cell-mediated immunity: comparison between VZV skin test and interferon-gamma enzyme-linked immunospot assay. , 2008, The Journal of infectious diseases.

[55]  A. Buland,et al.  Bayesian linearized AVO inversion , 2003 .

[56]  Sanyi Yuan,et al.  Sparse reflectivity inversion for nonstationary seismic data , 2014 .

[57]  S. Spitz Seismic trace interpolation in the F-X domain , 1991 .

[58]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[59]  Mauricio D. Sacchi,et al.  High-resolution three-term AVO inversion by means of a Trivariate Cauchy probability distribution , 2011 .

[60]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .