A dynamic information retrieval system for the Web

In conventional information retrieval (IR), documents in a collection are indexed before the retrieval process, and the document collection is generally static, organised and homogeneous. But, information on the Web is vast, dynamic, unorganised and heterogeneous. Current search engines and IR systems on the Web are based on the conventional indexing approach and have limitations including the need for frequent update of the index. We propose a non-indexing approach for information retrieval on the Web and show that the IR system based on this approach performs better than popular search engines.

[1]  Gary Marchionini,et al.  A Conceptual Framework for Text Filtering , 1996 .

[2]  Hans Peter Luhn,et al.  The Automatic Creation of Literature Abstracts , 1958, IBM J. Res. Dev..

[3]  Craig Locatis,et al.  Searching through cyberspace: the effects of link display and link density on information retrieval from hypertext on the World Wide Web , 1998 .

[4]  Christopher C. Yang,et al.  A natural language processing based Internet agent , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[5]  F. W. Lancaster,et al.  Information Retrieval Today , 1993 .

[6]  Peter Ingwersen,et al.  Search Procedures in the Library - Analysed from the Cognitive Point of View , 1982, J. Documentation.

[7]  Hans-Peter Frei,et al.  Retrieval algorithm effectiveness in a wide area network information filter , 1991, SIGIR '91.

[8]  Michael Roszkowski,et al.  A Distributed Architecture for Resource Discovery Using Metadata , 1998, D Lib Mag..

[9]  Robert R. Korfhage,et al.  Information Storage and Retrieval , 1963 .

[10]  Dietmar Wolfram,et al.  Applications Of Informetrics To Information Retrieval Research , 2000, Informing Sci. Int. J. an Emerg. Transdiscipl..

[11]  Jin Zhang,et al.  Informetric applications for information retrieval research. Sponsored by SIG CRS, SIG MET , 2002, ASIST.

[12]  Chris Buckley,et al.  SMART in TREC 8 , 1999, Text Retrieval Conference.

[13]  김성아 정보시대의 건축가 ( Architects of Information Age ) , 2002 .

[14]  E. Brown An Approach for Improving Execution Performance in Inference Network Based Information Retrieval , 1994 .

[15]  Tefko Saracevic,et al.  Evaluation of evaluation in information retrieval , 1995, SIGIR '95.

[16]  Christopher C. Yang,et al.  Intelligent agents for retrieving chinese Web financial news , 2000, ICIS.

[17]  Donna K. Harman,et al.  Results and Challenges in Web Search Evaluation , 1999, Comput. Networks.

[18]  Eugene L. Margulis,et al.  N-Poisson document modelling , 1992, SIGIR '92.

[19]  Shih-Hao Li Internet resource discovery-topical clustering and visualization using latent semantic indexing , 1996 .

[20]  Doug Beeferman Lexical Discovery with an Enriched Semantic Network , 1998, WordNet@ACL/COLING.

[21]  Marc J. Epstein,et al.  Statistical Analysis: Resolving Decision Problems in Business and Management , 1982 .

[22]  George Kingsley Zipf,et al.  Human behavior and the principle of least effort , 1949 .

[23]  Kam-Fai Wong,et al.  KPS: a Web Information Mining Algorithm , 1999, Comput. Networks.