Ca2+ Oscillations Mediated by the Synergistic Excitatory Actions of GABAA and NMDA Receptors in the Neonatal Hippocampus

[1]  I Khalilov,et al.  Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices. , 1997, The Journal of physiology.

[2]  J. Gaiarsa,et al.  Bidirectional plasticity expressed by GABAergic synapses in the neonatal rat hippocampus. , 1996, The Journal of physiology.

[3]  A. N. van den Pol,et al.  Excitatory actions of GABA in developing rat hypothalamic neurones. , 1996, The Journal of physiology.

[4]  F. Werblin,et al.  Requirement for Cholinergic Synaptic Transmission in the Propagation of Spontaneous Retinal Waves , 1996, Science.

[5]  A. Konnerth,et al.  Long-term potentiation and functional synapse induction in developing hippocampus , 1996, Nature.

[6]  H. Thoenen,et al.  GABAergic Stimulation Regulates the Phenotype of Hippocampal Interneurons through the Regulation of Brain-Derived Neurotrophic Factor , 1996, Neuron.

[7]  J. Barker,et al.  GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  N. Spitzer,et al.  Regulation of intracellular Cl- levels by Na(+)-dependent Cl- cotransport distinguishes depolarizing from hyperpolarizing GABAA receptor-mediated responses in spinal neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  A. Kapur,et al.  A dendritic GABAA-mediated IPSP regulates facilitation of NMDA-mediated responses to burst stimulation of afferent fibers in piriform cortex , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  A. Kriegstein,et al.  GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis , 1995, Neuron.

[11]  P. Bregestovski,et al.  Kinetics and Mg2+ block of N-methyl- d-aspartate receptor channels during postnatal development of hippocampal CA3 pyramidal neurons , 1995, Neuroscience.

[12]  Sheila M. Thomas,et al.  Calcium influx induces neurite growth through a Src-Ras signaling cassette , 1995, Neuron.

[13]  J. Barker,et al.  Depolarizing GABA‐activated Cl‐ channels in embryonic rat spinal and olfactory bulb cells. , 1995, The Journal of physiology.

[14]  K. Fox,et al.  The critical period for long-term potentiation in primary sensory cortex , 1995, Neuron.

[15]  X. Leinekugel,et al.  Synaptic GABAA activation induces Ca2+ rise in pyramidal cells and interneurons from rat neonatal hippocampal slices. , 1995, The Journal of physiology.

[16]  K. Staley,et al.  Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors , 1995, Science.

[17]  J. Gaiarsa,et al.  NMDA‐Dependent GABAA‐Mediated Polysynaptic Potentials in the Neonatal Rat Hippocampal CA3 Region , 1995, The European journal of neuroscience.

[18]  A. N. van den Pol,et al.  GABA neurotransmission in the hypothalamus: developmental reversal from Ca2+ elevating to depressing , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  N. Spitzer,et al.  Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients , 1995, Nature.

[20]  Michael C. Crair,et al.  A critical period for long-term potentiation at thalamocortical synapses , 1995, Nature.

[21]  Mark F. Bear,et al.  Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience , 1995, Nature.

[22]  P. Rakic,et al.  The role of receptor/channel activity in neuronal cell migration. , 1995, Journal of neurobiology.

[23]  X. Leinekugel,et al.  Postnatal maturation of gamma-aminobutyric acidA and B-mediated inhibition in the CA3 hippocampal region of the rat. , 1995, Journal of neurobiology.

[24]  L. C. Katz,et al.  Neuronal coupling and uncoupling in the developing nervous system , 1995, Current Opinion in Neurobiology.

[25]  R. Yuste,et al.  Neuronal domains in developing neocortex: Mechanisms of coactivation , 1995, Neuron.

[26]  G. Strecker,et al.  Blockade of NMDA-activated channels by magnesium in the immature rat hippocampus. , 1994, Journal of neurophysiology.

[27]  D. Reichling,et al.  Developmental Loss of GABA‐ and Glycine‐induced Depolarization and Ca2+ Transients in Embryonic Rat Dorsal Horn Neurons in Culture , 1994, The European journal of neuroscience.

[28]  P. Bregestovski,et al.  Kainate-induced inactivation of NMDA currents via an elevation of intracellular Ca2+ in hippocampal neurons. , 1994, Journal of neurophysiology.

[29]  D. Reichling,et al.  Mechanisms of GABA and glycine depolarization‐induced calcium transients in rat dorsal horn neurons. , 1994, The Journal of physiology.

[30]  M. Sanderson,et al.  GABA has excitatory actions on GnRH-secreting immortalized hypothalamic (GT1-7) neurons. , 1994, Neuroendocrinology.

[31]  K. Kaila,et al.  Ionic basis of GABAA receptor channel function in the nervous system , 1994, Progress in Neurobiology.

[32]  B. Sakmann,et al.  Developmental and regional expression in the rat brain and functional properties of four NMDA receptors , 1994, Neuron.

[33]  R. Khazipov,et al.  γ-Aminobutyric acid (GABA): a fast excitatory transmitter which may regulate the development of hippocampal neurones in early postnatal life , 1994 .

[34]  R. Nicoll,et al.  NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms , 1993, Trends in Neurosciences.

[35]  C. Shatz,et al.  Transient period of correlated bursting activity during development of the mammalian retina , 1993, Neuron.

[36]  Y. Komatsu,et al.  Long-term modification of inhibitory synaptic transmission in developing visual cortex. , 1993, Neuroreport.

[37]  I. Módy,et al.  Differential ontogenesis of presynaptic and postsynaptic GABAB inhibition in rat somatosensory cortex. , 1993, Journal of neurophysiology.

[38]  J. Lauder,et al.  Neurotransmitters as growth regulatory signals: role of receptors and second messengers , 1993, Trends in Neurosciences.

[39]  Lewis B. Haberly,et al.  Associative long-term potentiation in piriform cortex slices requires GABAA blockade , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  Y. Ben-Ari,et al.  Involvement of GABAA receptors in the outgrowth of cultured hippocampal neurons , 1993, Neuroscience Letters.

[41]  M. Khrestchatisky,et al.  Transient expression of the NR2C subunit of the NMDA receptor in developing rat brain , 1993, Neuroreport.

[42]  Lawrence C. Katz,et al.  Coordinate activity in retinal and cortical development , 1993, Current Opinion in Neurobiology.

[43]  C. Shatz,et al.  Developmental mechanisms that generate precise patterns of neuronal connectivity , 1993, Cell.

[44]  W. N. Ross,et al.  Synaptically activated increases in Ca2+ concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca2+ channels , 1992, Neuron.

[45]  G. Carmignoto,et al.  Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. , 1992, Science.

[46]  D. Tank,et al.  Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  M. Jackson,et al.  Early development of glycine- and GABA-mediated synapses in rat spinal cord , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  C. Inagaki,et al.  Uneven distribution of intracellular Cl− in rat hippocampal neurons , 1992, Neuroscience Letters.

[49]  R. Dingledine,et al.  Dual-component miniature excitatory synaptic currents in rat hippocampal CA3 pyramidal neurons. , 1992, Journal of neurophysiology.

[50]  A. Agmon,et al.  NMDA receptor-mediated currents are prominent in the thalamocortical synaptic response before maturation of inhibition. , 1992, Journal of neurophysiology.

[51]  I. Módy,et al.  Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance. , 1992, Journal of neurophysiology.

[52]  Shaul Hestrin,et al.  Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse , 1992, Nature.

[53]  Michael J. O'Donovan,et al.  Development of spinal motor networks in the chick embryo. , 1992, The Journal of experimental zoology.

[54]  L. Sivilotti,et al.  GABA receptor mechanisms in the central nervous system , 1991, Progress in Neurobiology.

[55]  I. Spigelman,et al.  Development of GABA‐mediated, chloride‐dependent inhibition in CA1 pyramidal neurones of immature rat hippocampal slices. , 1991, The Journal of physiology.

[56]  Y. Ben-Ari,et al.  GABA: an excitatory transmitter in early postnatal life , 1991, Trends in Neurosciences.

[57]  J. Connor,et al.  Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses , 1991, Nature.

[58]  N. Spitzer,et al.  Role of calcium and protein kinase C in development of the delayed rectifier potassium current in xenopus spinal neurons , 1991, Neuron.

[59]  Y. Ben-Ari,et al.  Modulation of GABA‐mediated Synaptic Potentials by Glutamatergic Agonists in Neonatal CA3 Rat Hippocampal Neurons , 1991, The European journal of neuroscience.

[60]  Rafael Yuste,et al.  Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters , 1991, Neuron.

[61]  A. Kriegstein,et al.  Initial expression and endogenous activation of NMDA channels in early neocortical development , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  D. Prince,et al.  Postnatal maturation of the GABAergic system in rat neocortex. , 1991, Journal of neurophysiology.

[63]  J. Barker,et al.  Embryonic and early postnatal hippocampal cells respond to nanomolar concentrations of muscimol. , 1990, Brain research. Developmental brain research.

[64]  M. Constantine-Paton,et al.  Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. , 1990, Annual review of neuroscience.

[65]  S. B. Kater,et al.  Neurotransmitter regulation of neuronal outgrowth, plasticity and survival , 1989, Trends in Neurosciences.

[66]  S. Udin,et al.  N-methyl-D-aspartate antagonists prevent interaction of binocular maps in Xenopus tectum , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  Y. Ben-Ari,et al.  Giant synaptic potentials in immature rat CA3 hippocampal neurones. , 1989, The Journal of physiology.

[68]  N. Daw,et al.  The location and function of NMDA receptors in cat and kitten visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  R Y Tsien,et al.  Photochemically generated cytosolic calcium pulses and their detection by fluo-3. , 1989, The Journal of biological chemistry.

[70]  A. Represa,et al.  Transient increase of NMDA-binding sites in human hippocampus during development , 1989, Neuroscience Letters.

[71]  A. Schousboe,et al.  GABA agonist promoted formation of low affinity GABA receptors on cerebellar granule cells is restricted to early development , 1988, International Journal of Developmental Neuroscience.

[72]  Y. Ben-Ari,et al.  Transient increased density of NMDA binding sites in the developing rat hippocampus , 1988, Brain Research.

[73]  R. Corradetti,et al.  D-aminophosphonovaleric acid-sensitive spontaneous giant EPSPs in immature rat hippocampal neurones. , 1988, European journal of pharmacology.

[74]  J. Barker,et al.  The Role of GABA: Neurotrophic Activity of GABA During Development. , 1988, Science.

[75]  P. Spoerri Neurotrophic effects of GABA in cultures of embryonic chick brain and retina , 1988, Synapse.

[76]  W. Singer,et al.  Long-term potentiation and NMDA receptors in rat visual cortex , 1987, Nature.

[77]  T. Tsumoto,et al.  NMDA receptors in the visual cortex of young kittens are more effective than those of adult cats , 1987, Nature.

[78]  M. Mayer,et al.  Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones , 1984, Nature.

[79]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[80]  H. Wigström,et al.  Facilitated induction of hippocampal long-lasting potentiation during blockade of inhibition , 1983, Nature.

[81]  A. Hamberger,et al.  Glutamate as transmitter of hippocampal perforant path , 1977, Nature.