Recent advances in deep learning‐based side‐channel analysis

[1]  Paul C. Kocher,et al.  Differential Power Analysis , 1999, CRYPTO.

[2]  Jasper G. J. van Woudenberg,et al.  Improving Differential Power Analysis by Elastic Alignment , 2011, CT-RSA.

[3]  Julien Bringer,et al.  There Is Wisdom in Harnessing the Strengths of Your Enemy: Customized Encoding to Thwart Side-Channel Attacks , 2016, FSE.

[4]  Pankaj Rohatgi,et al.  Towards Sound Approaches to Counteract Power-Analysis Attacks , 1999, CRYPTO.

[5]  Emmanuel Prouff,et al.  Statistical Analysis of Second Order Differential Power Analysis , 2009, IEEE Transactions on Computers.

[6]  Georg Sigl,et al.  Improving Non-profiled Attacks on Exponentiations Based on Clustering and Extracting Leakage from Multi-channel High-Resolution EM Measurements , 2015, COSADE.

[7]  Cécile Canovas,et al.  Study of Deep Learning Techniques for Side-Channel Analysis and Introduction to ASCAD Database , 2018, IACR Cryptol. ePrint Arch..

[8]  Eric Peeters,et al.  Template Attacks in Principal Subspaces , 2006, CHES.

[9]  Jean-Sébastien Coron,et al.  Analysis and Improvement of the Random Delay Countermeasure of CHES 2009 , 2010, CHES.

[10]  Joos Vandewalle,et al.  Machine learning in side-channel analysis: a first study , 2011, Journal of Cryptographic Engineering.

[11]  Paul C. Kocher,et al.  Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems , 1996, CRYPTO.

[12]  Kamil Vrba,et al.  Power analysis attack based on the MLP in DPA Contest v4 , 2015, 2015 38th International Conference on Telecommunications and Signal Processing (TSP).

[13]  Zdenek Martinasek,et al.  k-Nearest Neighbors Algorithm in Profiling Power Analysis Attacks , 2016 .

[14]  Petr Dzurenda,et al.  Profiling power analysis attack based on MLP in DPA contest V4.2 , 2016, 2016 39th International Conference on Telecommunications and Signal Processing (TSP).

[15]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[16]  Cécile Canovas,et al.  Convolutional Neural Networks with Data Augmentation Against Jitter-Based Countermeasures - Profiling Attacks Without Pre-processing , 2017, CHES.

[17]  Tim Güneysu,et al.  Applications of machine learning techniques in side-channel attacks: a survey , 2019, Journal of Cryptographic Engineering.

[18]  Christophe Clavier,et al.  Differential Power Analysis in the Presence of Hardware Countermeasures , 2000, CHES.

[19]  Axel Legay,et al.  On the Performance of Convolutional Neural Networks for Side-Channel Analysis , 2018, SPACE.

[20]  Ali A. Ghorbani,et al.  Application of deep learning to cybersecurity: A survey , 2019, Neurocomputing.

[21]  Annelie Heuser,et al.  Intelligent Machine Homicide - Breaking Cryptographic Devices Using Support Vector Machines , 2012, COSADE.

[22]  François-Xavier Standaert,et al.  Shuffling against Side-Channel Attacks: A Comprehensive Study with Cautionary Note , 2012, ASIACRYPT.

[23]  Olivier Markowitch,et al.  Robust profiled attacks: should the adversary trust the dataset? , 2017, IET Inf. Secur..

[24]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[25]  Akashi Satoh,et al.  DPA Using Phase-Based Waveform Matching against Random-Delay Countermeasure , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[26]  Cécile Canovas,et al.  Gradient Visualization for General Characterization in Profiling Attacks , 2019, IACR Cryptol. ePrint Arch..

[27]  Amir Moradi,et al.  Moments-Correlating DPA , 2016, IACR Cryptol. ePrint Arch..

[28]  Christof Paar,et al.  A Stochastic Model for Differential Side Channel Cryptanalysis , 2005, CHES.

[29]  Emmanuel Prouff,et al.  Breaking Cryptographic Implementations Using Deep Learning Techniques , 2016, SPACE.

[30]  Louis Goubin,et al.  DES and Differential Power Analysis (The "Duplication" Method) , 1999, CHES.

[31]  Thomas S. Messerges,et al.  Using Second-Order Power Analysis to Attack DPA Resistant Software , 2000, CHES.

[32]  Stefan Mangard,et al.  Masked Dual-Rail Pre-charge Logic: DPA-Resistance Without Routing Constraints , 2005, CHES.

[33]  Jean-Sébastien Coron,et al.  An Efficient Method for Random Delay Generation in Embedded Software , 2009, CHES.

[34]  Alexander Binder,et al.  On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation , 2015, PloS one.

[35]  Elisabeth Oswald,et al.  Profiling DPA: Efficacy and Efficiency Trade-Offs , 2013, CHES.

[36]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[37]  Jean-Sébastien Coron,et al.  Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems , 1999, CHES.

[38]  Jasper G. J. van Woudenberg,et al.  RAM: Rapid Alignment Method , 2011, CARDIS.

[39]  A. Tikhonov On the stability of inverse problems , 1943 .

[40]  Eric Bourbao,et al.  Deep Learning vs Template Attacks in front of fundamental targets: experimental study , 2018, IACR Cryptol. ePrint Arch..

[41]  Máire O'Neill,et al.  Neural network based attack on a masked implementation of AES , 2015, 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST).

[42]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[43]  Christophe Clavier,et al.  Correlation Power Analysis with a Leakage Model , 2004, CHES.

[44]  Steven R. Young,et al.  Optimizing deep learning hyper-parameters through an evolutionary algorithm , 2015, MLHPC@SC.

[45]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[46]  François-Xavier Standaert,et al.  Using Subspace-Based Template Attacks to Compare and Combine Power and Electromagnetic Information Leakages , 2008, CHES.

[47]  P. Kalpana,et al.  Power analysis attack using neural networks with wavelet transform as pre-processor , 2014, 18th International Symposium on VLSI Design and Test.

[48]  Bart Preneel,et al.  Mutual Information Analysis , 2008, CHES.