Skeletal diversity construction via a branching synthetic strategy.

A branching synthetic strategy was used to efficiently generate structurally diverse scaffolds, which span a broad area of chemical descriptor space, and their biological activity against MRSA was demonstrated.

[1]  Giovanni Muncipinto,et al.  Short synthesis of skeletally and stereochemically diverse small molecules by coupling petasis condensation reactions to cyclization reactions. , 2006, Angewandte Chemie.

[2]  Jared T Shaw,et al.  A structurally diverse library of polycyclic lactams resulting from systematic placement of proximal functional groups. , 2006, Angewandte Chemie.

[3]  David R. Liu,et al.  Small-molecule diversification from iterated branching reaction pathways enabled by DNA-templated synthesis. , 2005, Angewandte Chemie.

[4]  H. Blackwell,et al.  Small molecule inhibitors of bacterial quorum sensing and biofilm formation. , 2005, Journal of the American Chemical Society.

[5]  P. Stockley,et al.  Synthesis of a library of stereo- and regiochemically diverse aminoglycoside derivatives. , 2005, Organic & biomolecular chemistry.

[6]  Derek S. Tan,et al.  Diversity-oriented synthesis: exploring the intersections between chemistry and biology , 2005, Nature chemical biology.

[7]  John A. Tallarico,et al.  Small-molecule diversity using a skeletal transformation strategy. , 2005, Organic letters.

[8]  Robin S. Dothager,et al.  Synthesis and identification of small molecules that potently induce apoptosis in melanoma cells through G1 cell cycle arrest. , 2005, Journal of the American Chemical Society.

[9]  David R Spring,et al.  Chemical genetics to chemical genomics: small molecules offer big insights. , 2005, Chemical Society reviews.

[10]  P. Arya,et al.  Stereocontrolled solid-phase synthesis of a 90-membered library of indoline-alkaloid-like polycycles from an enantioenriched aminoindoline scaffold. , 2005, Angewandte Chemie.

[11]  P. Arya,et al.  Exploring new chemical space by stereocontrolled diversity-oriented synthesis. , 2005, Chemistry & biology.

[12]  Stuart L Schreiber,et al.  Skeletal diversity via a folding pathway: synthesis of indole alkaloid-like skeletons. , 2005, Organic letters.

[13]  Christopher T. Walsh,et al.  Lessons from natural molecules , 2004, Nature.

[14]  Wei Zhang Fluorous synthesis of heterocyclic systems. , 2004, Chemical reviews.

[15]  S. Schreiber,et al.  A planning strategy for diversity-oriented synthesis. , 2004, Angewandte Chemie.

[16]  S. Schreiber,et al.  Synthetic strategy toward skeletal diversity via solid-supported, otherwise unstable reactive intermediates. , 2004, Angewandte Chemie.

[17]  David R Spring,et al.  Diversity-oriented synthesis; a challenge for synthetic chemists. , 2003, Organic & biomolecular chemistry.

[18]  Stuart L Schreiber,et al.  Generating Diverse Skeletons of Small Molecules Combinatorially , 2003, Science.

[19]  S. Nguyen,et al.  Catalytic, three-component assembly reaction for the synthesis of pyrrolidines. , 2003, Organic letters.

[20]  Youssef L Bennani,et al.  Synthesis and SAR of aminoalkoxy-biaryl-4-carboxamides: novel and selective histamine H3 receptor antagonists. , 2003, Bioorganic & medicinal chemistry letters.

[21]  S. Schreiber PERSPECTIVE: THE SMALL-MOLECULE APPROACH TO BIOLOGYChemical genetics and diversity-oriented organic synthesis make possible the systematic exploration of biology , 2003 .

[22]  Stuart L. Schreiber,et al.  The small-molecule approach to biology , 2003 .

[23]  Herbert Waldmann,et al.  From protein domains to drug candidates-natural products as guiding principles in the design and synthesis of compound libraries. , 2002, Angewandte Chemie.

[24]  Herbert Waldmann,et al.  From protein domains to drug candidates – natural products as guiding principles in , 2002 .

[25]  C. Kappe,et al.  Microwave-mediated regioselective synthesis of novel pyrimido[1,2- a ]pyrimidines under solvent-free conditions , 2001 .

[26]  S. Schreiber,et al.  Target-oriented and diversity-oriented organic synthesis in drug discovery. , 2000, Science.

[27]  T. Ye,et al.  Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides , 1998 .

[28]  P. Wipf,et al.  Fluorous Synthesis: A Fluorous-Phase Strategy for Improving Separation Efficiency in Organic Synthesis , 1997, Science.

[29]  P. Dewick,et al.  Medicinal Natural Products: A Biosynthetic Approach , 1997 .

[30]  R. H. Kline,et al.  Synthesis of 3-arylecgonine analogues as inhibitors of cocaine binding and dopamine uptake. , 1990, Journal of medicinal chemistry.

[31]  Alfred F. Noels,et al.  Transition-metal-catalyzed reactions of diazo compounds. 2. Addition to aromatic molecules: catalysis of Buchner's synthesis of cycloheptatrienes , 1981 .

[32]  A. Demonceau,et al.  Catalytic control of reactions of dipoles and carbenes; an easy and efficient synthesis of cycloheptatrienes from aromatic compounds by an extension of Buchner's reaction , 1980 .

[33]  Theodor Curtius,et al.  Synthese von Ketonsäureäthern aus Aldehyden und Diazoessigäther , 1885 .