Semi-analytical solution for orthotropic piezoelectric laminates in cylindrical bending with interfacial imperfections

[1]  Zhifei Shi,et al.  Free vibration of a functionally graded piezoelectric beam via state-space based differential quadrature , 2009 .

[2]  Zhongming Zheng,et al.  Two-dimensional thermoelasticity solution for functionally graded thick beams , 2006 .

[3]  Wei Chen,et al.  3D free vibration analysis of cross-ply laminated plates with one pair of opposite edges simply supported , 2005 .

[4]  Jiachang Cai,et al.  Benchmark solution of imperfect angle-ply laminated rectangular plates in cylindrical bending with surface piezoelectric layers as actuator and sensor , 2004 .

[5]  W. Q. Chen,et al.  Exact solution of angle-ply piezoelectric laminates in cylindrical bending with interfacial imperfections , 2004 .

[6]  W. Q. Chen,et al.  Exact three-dimensional solutions of laminated orthotropic piezoelectric rectangular plates featuring interlaminar bonding imperfections modeled by a general spring layer , 2004 .

[7]  W. Q. Chen,et al.  On free vibration of cross-ply laminates in cylindrical bending , 2004 .

[8]  W. Q. Chen,et al.  Three-dimensional exact analysis of angle-ply laminates in cylindrical bending with interfacial damage via state-space method , 2004 .

[9]  Weiqiu Chen,et al.  Free vibration analysis of generally laminated beams via state-space-based differential quadrature , 2004 .

[10]  Weiqiu Chen,et al.  Elasticity solution for free vibration of laminated beams , 2003 .

[11]  Siu-Tong Choi,et al.  VIBRATION ANALYSIS OF NON-CIRCULAR CURVED PANELS BY THE DIFFERENTIAL QUADRATURE METHOD , 2003 .

[12]  Xiaoping Shu Vibration and bending of antisymmetrically angle-ply laminated plates with perfectly and weakly bonded layers , 2001 .

[13]  K. Sze,et al.  A micro-mechanics model for imperfect interface in dielectric materials , 2001 .

[14]  Liviu Librescu,et al.  A general linear theory of laminated composite shells featuring interlaminar bonding imperfections , 2001 .

[15]  T. Williams Efficiency and accuracy considerations in a unified plate theory with delamination , 2001 .

[16]  Charles W. Bert,et al.  A DIFFERENTIAL QUADRATURE ANALYSIS OF VIBRATION FOR RECTANGULAR STIFFENED PLATES , 2001 .

[17]  Ugo Icardi,et al.  Free vibration of composite beams featuring interlaminar bonding imperfections and exposed to thermomechanical loading , 1999 .

[18]  K. Soldatos,et al.  A general theory for the accurate stress analysis of homogeneous and laminated composite beams , 1997 .

[19]  Paul R. Heyliger,et al.  Exact Solutions for Simply Supported Laminated Piezoelectric Plates , 1997 .

[20]  A. Cheng Material coefficients of anisotropic poroelasticity , 1997 .

[21]  Paul R. Heyliger,et al.  Exact Solutions for Laminated Piezoelectric Plates in Cylindrical Bending , 1996 .

[22]  A. K. Jemah,et al.  Theory for Multilayered Anisotropic Plates With Weakened Interfaces , 1996 .

[23]  Paul R. Heyliger,et al.  Free vibration of piezoelectric laminates in cylindrical bending , 1995 .

[24]  Dimitris A. Saravanos,et al.  Exact free‐vibration analysis of laminated plates with embedded piezoelectric layers , 1995 .

[25]  B. Samanta,et al.  Exact solution for static analysis of an intelligent structure under cylindrical bending , 1993 .

[26]  M. C. Ray,et al.  Exact analysis of coupled electroelastic behaviour of a piezoelectric plate under cylindrical bending , 1992 .

[27]  C. Shu,et al.  APPLICATION OF GENERALIZED DIFFERENTIAL QUADRATURE TO SOLVE TWO-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS , 1992 .

[28]  N. J. Pagano,et al.  Influence of Shear Coupling in Cylindrical. Bending of Anisotropic Laminates , 1970 .

[29]  N. Pagano,et al.  Exact Solutions for Composite Laminates in Cylindrical Bending , 1969 .

[30]  R. Knops,et al.  Three-Dimensional Problems of the Theory of Elasticity , 1967, The Mathematical Gazette.

[31]  C. Lü,et al.  Free vibration of cross-ply piezoelectric laminates in cylindrical bending with arbitrary edges , 2009 .

[32]  Liviu Librescu,et al.  Dynamic Response of Adaptive Cross-Ply Cantilevers Featuring Interlaminar Bonding Imperfections , 2000 .

[33]  Dale A. Hopkins,et al.  Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates , 1997 .

[34]  C. Bert,et al.  Differential Quadrature Method in Computational Mechanics: A Review , 1996 .

[35]  M. Pandey,et al.  Differential quadrature method in the buckling analysis of beams and composite plates , 1991 .