Acceleration of an Iterative Method for the Evaluation of High-Frequency Multiple Scattering Effects

High frequency integral equation methodologies display the capability of reproducing single-scattering returns in frequency-independent computational times and employ a Neumann series formulation to handle multiple-scattering effects. This requires the solution of an enormously large number of single-scattering problems to attain a reasonable numerical accuracy in geometrically challenging configurations. Here we propose a novel and effective Krylov subspace method suitable for the use of high frequency integral equation techniques and significantly accelerates the convergence of Neumann series. We additionally complement this strategy utilizing a preconditioner based upon Kirchhoff approximations that provides a further reduction in the overall computational cost.

[1]  Oubay Hassan,et al.  A high order hybrid finite element method applied to the solution of electromagnetic wave scattering problems in the time domain , 2009 .

[2]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[3]  Viacheslav I. Lebedev An introduction to functional analysis in computational mathematics , 1996 .

[4]  T. Abboud,et al.  Méthode des équations intégrales pour les hautes fréquences , 1994 .

[5]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[6]  Ivan G. Graham,et al.  A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering , 2007, Numerische Mathematik.

[7]  Lexing Ying,et al.  Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers , 2010, Multiscale Model. Simul..

[8]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[9]  Charles Swartz,et al.  An introduction to functional analysis , 1992 .

[10]  L. Hörmander,et al.  Pseudo-Differential Operators , 1965 .

[11]  Xavier Antoine,et al.  Advances in the On-Surface Radiation Condition Method: Theory, Numerics and Applications , 2008 .

[12]  Marcus J. Grote,et al.  Local nonreflecting boundary condition for time-dependent multiple scattering , 2011, J. Comput. Phys..

[13]  Eldar Giladi,et al.  Asymptotically derived boundary elements for the Helmholtz equation in high frequencies , 2007 .

[14]  Stuart C. Hawkins,et al.  A fully discrete Galerkin method for high frequency exterior acoustic scattering in three dimensions , 2011, J. Comput. Phys..

[15]  O. Bruno,et al.  An O(1) integration scheme for three-dimensional surface scattering problems , 2007 .

[16]  Daan Huybrechs,et al.  A Sparse Discretization for Integral Equation Formulations of High Frequency Scattering Problems , 2007, SIAM J. Sci. Comput..

[17]  Marcus J. Grote,et al.  Nonreflecting boundary condition for time-dependent multiple scattering , 2007, J. Comput. Phys..

[18]  R. Kress Linear Integral Equations , 1989 .

[19]  Lehel Banjai,et al.  Hierarchical matrix techniques for low- and high-frequency Helmholtz problems , 2007 .

[20]  M. Fedoryuk,et al.  The stationary phase method and pseudodifferential operators , 1971 .

[21]  D. Givoli High-order local non-reflecting boundary conditions: a review☆ , 2004 .

[22]  C. Geuzaine,et al.  On the O(1) solution of multiple-scattering problems , 2005, IEEE Transactions on Magnetics.

[23]  Peter Monk,et al.  Wave-Number-Explicit Bounds in Time-Harmonic Scattering , 2008, SIAM J. Math. Anal..

[24]  Christiaan C. Stolk,et al.  An improved sweeping domain decomposition preconditioner for the Helmholtz equation , 2014, Adv. Comput. Math..

[25]  O. Bruno,et al.  A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications , 2001 .

[26]  Y. Egorov,et al.  Fourier Integral Operators , 1994 .

[27]  J. Hesthaven,et al.  High-Order Accurate Methods for Time-domain Electromagnetics , 2004 .

[28]  W. Chew,et al.  Multilevel Fast Multipole Acceleration in the Nyström Discretization of Surface Electromagnetic Integral Equations for Composite Objects , 2010, IEEE Transactions on Antennas and Propagation.

[29]  Fernando Reitich,et al.  Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[31]  Akash Anand,et al.  Analysis of multiple scattering iterations for high-frequency scattering problems. II: The three-dimensional scalar case , 2009, Numerische Mathematik.

[32]  S. Amini,et al.  Multi-level fast multipole solution of the scattering problem , 2003 .

[33]  R. Namburu,et al.  Scalable Electromagnetic Simulation Environment , 2004 .

[34]  Francisco-Javier Sayas,et al.  Convergence analysis of a high-order Nyström integral-equation method for surface scattering problems , 2011, Numerische Mathematik.

[35]  J. Keller,et al.  Geometrical theory of diffraction. , 1962, Journal of the Optical Society of America.

[36]  Fatih Ecevit,et al.  Frequency-adapted Galerkin boundary element methods for convex scattering problems , 2017, Numerische Mathematik.

[37]  Joseph B. Keller,et al.  An Asymptotically Derived Boundary Element Method for the Helmholtz Equation , 2004 .

[38]  Mikhael Balabane,et al.  Boundary Decomposition for Helmholtz and Maxwell equations 1: disjoint sub‐scatterers , 2004 .

[39]  Fernando Reitich,et al.  Analysis of Multiple Scattering Iterations for High-frequency Scattering Problems. I: the Two-dimensional Case Analysis of Multiple Scattering Iterations for High-frequency Scattering Problems. I: the Two-dimensional Case , 2006 .

[40]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[41]  Zydrunas Gimbutas,et al.  Fast multi-particle scattering: A hybrid solver for the Maxwell equations in microstructured materials , 2011, J. Comput. Phys..