Acceleration of an Iterative Method for the Evaluation of High-Frequency Multiple Scattering Effects
暂无分享,去创建一个
[1] Oubay Hassan,et al. A high order hybrid finite element method applied to the solution of electromagnetic wave scattering problems in the time domain , 2009 .
[2] R. Kress,et al. Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .
[3] Viacheslav I. Lebedev. An introduction to functional analysis in computational mathematics , 1996 .
[4] T. Abboud,et al. Méthode des équations intégrales pour les hautes fréquences , 1994 .
[5] A. Majda,et al. Absorbing boundary conditions for the numerical simulation of waves , 1977 .
[6] Ivan G. Graham,et al. A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering , 2007, Numerische Mathematik.
[7] Lexing Ying,et al. Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers , 2010, Multiscale Model. Simul..
[8] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[9] Charles Swartz,et al. An introduction to functional analysis , 1992 .
[10] L. Hörmander,et al. Pseudo-Differential Operators , 1965 .
[11] Xavier Antoine,et al. Advances in the On-Surface Radiation Condition Method: Theory, Numerics and Applications , 2008 .
[12] Marcus J. Grote,et al. Local nonreflecting boundary condition for time-dependent multiple scattering , 2011, J. Comput. Phys..
[13] Eldar Giladi,et al. Asymptotically derived boundary elements for the Helmholtz equation in high frequencies , 2007 .
[14] Stuart C. Hawkins,et al. A fully discrete Galerkin method for high frequency exterior acoustic scattering in three dimensions , 2011, J. Comput. Phys..
[15] O. Bruno,et al. An O(1) integration scheme for three-dimensional surface scattering problems , 2007 .
[16] Daan Huybrechs,et al. A Sparse Discretization for Integral Equation Formulations of High Frequency Scattering Problems , 2007, SIAM J. Sci. Comput..
[17] Marcus J. Grote,et al. Nonreflecting boundary condition for time-dependent multiple scattering , 2007, J. Comput. Phys..
[18] R. Kress. Linear Integral Equations , 1989 .
[19] Lehel Banjai,et al. Hierarchical matrix techniques for low- and high-frequency Helmholtz problems , 2007 .
[20] M. Fedoryuk,et al. The stationary phase method and pseudodifferential operators , 1971 .
[21] D. Givoli. High-order local non-reflecting boundary conditions: a review☆ , 2004 .
[22] C. Geuzaine,et al. On the O(1) solution of multiple-scattering problems , 2005, IEEE Transactions on Magnetics.
[23] Peter Monk,et al. Wave-Number-Explicit Bounds in Time-Harmonic Scattering , 2008, SIAM J. Math. Anal..
[24] Christiaan C. Stolk,et al. An improved sweeping domain decomposition preconditioner for the Helmholtz equation , 2014, Adv. Comput. Math..
[25] O. Bruno,et al. A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications , 2001 .
[26] Y. Egorov,et al. Fourier Integral Operators , 1994 .
[27] J. Hesthaven,et al. High-Order Accurate Methods for Time-domain Electromagnetics , 2004 .
[28] W. Chew,et al. Multilevel Fast Multipole Acceleration in the Nyström Discretization of Surface Electromagnetic Integral Equations for Composite Objects , 2010, IEEE Transactions on Antennas and Propagation.
[29] Fernando Reitich,et al. Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[30] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[31] Akash Anand,et al. Analysis of multiple scattering iterations for high-frequency scattering problems. II: The three-dimensional scalar case , 2009, Numerische Mathematik.
[32] S. Amini,et al. Multi-level fast multipole solution of the scattering problem , 2003 .
[33] R. Namburu,et al. Scalable Electromagnetic Simulation Environment , 2004 .
[34] Francisco-Javier Sayas,et al. Convergence analysis of a high-order Nyström integral-equation method for surface scattering problems , 2011, Numerische Mathematik.
[35] J. Keller,et al. Geometrical theory of diffraction. , 1962, Journal of the Optical Society of America.
[36] Fatih Ecevit,et al. Frequency-adapted Galerkin boundary element methods for convex scattering problems , 2017, Numerische Mathematik.
[37] Joseph B. Keller,et al. An Asymptotically Derived Boundary Element Method for the Helmholtz Equation , 2004 .
[38] Mikhael Balabane,et al. Boundary Decomposition for Helmholtz and Maxwell equations 1: disjoint sub‐scatterers , 2004 .
[39] Fernando Reitich,et al. Analysis of Multiple Scattering Iterations for High-frequency Scattering Problems. I: the Two-dimensional Case Analysis of Multiple Scattering Iterations for High-frequency Scattering Problems. I: the Two-dimensional Case , 2006 .
[40] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[41] Zydrunas Gimbutas,et al. Fast multi-particle scattering: A hybrid solver for the Maxwell equations in microstructured materials , 2011, J. Comput. Phys..