Robust adaptive fractional-order observer for a class of fractional-order nonlinear systems with unknown parameters

This paper investigates the parameter and state estimation problems for a class of fractional-order nonlinear systems subject to the perturbation on the observer gain. The fractional-order nonlinear systems are linear in the unknown parameters and nonlinear in the states. Based on the equivalent integer-order differential equations, a fractional-order non-fragile observer and two kinds of fractional-order adaptive law are derived by applying the direct Lyapunov approach. The results are systematically obtained in terms of linear matrix inequalities and solved by YALMIP Matlab Toolbox. Two numerical examples with comparative result of two proposed adaptive laws are provided to illustrate the efficiency and validity of the proposed method.

[1]  Hamid Reza Momeni,et al.  Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems , 2012, Signal Process..

[2]  Suman Saha,et al.  On the Selection of Tuning Methodology of FOPID Controllers for the Control of Higher Order Processes , 2011, ISA transactions.

[3]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[4]  Mohamed Darouach,et al.  Design of unknown input fractional-order observers for fractional-order systems , 2013, Int. J. Appl. Math. Comput. Sci..

[5]  Yong Zhou,et al.  Non-fragile observer-based robust control for a class of fractional-order nonlinear systems , 2013, Syst. Control. Lett..

[6]  Yang Ge,et al.  Observer-based stabilisation of a class of fractional order non-linear systems for 0 α <;2 case , 2014 .

[7]  Ruoxun Zhang,et al.  Stability analysis of a class of fractional order nonlinear systems with order lying in (0, 2). , 2015, ISA transactions.

[8]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[9]  Yangquan Chen,et al.  Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems , 2012, Autom..

[10]  Jun-Guo Lu,et al.  Robust Stability and Stabilization of Fractional-Order Interval Systems with the Fractional Order $\alpha$: The $0≪\alpha≪1$ Case , 2010, IEEE Transactions on Automatic Control.

[11]  Christophe Farges,et al.  On Observability and Pseudo State Estimation of Fractional Order Systems , 2012, Eur. J. Control.

[12]  Abdullah Ates,et al.  A stochastic multi-parameters divergence method for online auto-tuning of fractional order PID controllers , 2014, J. Frankl. Inst..

[13]  Wei Jiang,et al.  Asymptotical stability of Riemann–Liouville fractional nonlinear systems , 2016, Nonlinear Dynamics.

[14]  Jimin Yu,et al.  Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems , 2013, Autom..

[15]  Dominik Sierociuk,et al.  Diffusion process modeling by using fractional-order models , 2015, Appl. Math. Comput..

[16]  Chuang Li,et al.  Robust stability and stabilization of fractional order interval systems with coupling relationships: The 0 , 2012, J. Frankl. Inst..

[17]  Shankar P. Bhattacharyya,et al.  Robust, fragile, or optimal? , 1997, IEEE Trans. Autom. Control..

[18]  Lei Li,et al.  Nonlinear dynamic analysis of electrically actuated viscoelastic bistable microbeam system , 2017 .

[19]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[20]  Christophe Farges,et al.  Fractional systems state space description: some wrong ideas and proposed solutions , 2014 .

[21]  Kai Chen,et al.  Phase-constrained fractional order PIλ controller for second-order-plus dead time systems , 2017 .

[22]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[23]  Chuang Li,et al.  The ellipsoidal invariant set of fractional order systems subject to actuator saturation: the convex combination form , 2016, IEEE/CAA Journal of Automatica Sinica.

[24]  R. Rajamani,et al.  A systematic approach to adaptive observer synthesis for nonlinear systems , 1997, IEEE Trans. Autom. Control..

[25]  Weidong Chen,et al.  Maximal perturbation bounds for robust stabilizability of fractional-order systems with norm bounded perturbations , 2013, J. Frankl. Inst..

[26]  Yong Zhou,et al.  Full‐Order and Reduced‐order Observer Design for a Class of Fractional‐order Nonlinear Systems , 2016 .

[27]  M. Rapaić,et al.  Variable-Order Fractional Operators for Adaptive Order and Parameter Estimation , 2014, IEEE Transactions on Automatic Control.

[28]  Elif Demirci,et al.  A method for solving differential equations of fractional order , 2012, J. Comput. Appl. Math..

[29]  P. Balasubramaniam,et al.  Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system , 2015 .

[30]  Jianyu Lin,et al.  Robust resilient controllers synthesis for uncertain fractional-order large-scale interconnected system , 2014, J. Frankl. Inst..

[31]  Valeriy Martynyuk,et al.  Fractional model of an electrochemical capacitor , 2015, Signal Process..

[32]  José António Tenreiro Machado,et al.  New trends in fractional dynamics , 2014 .

[33]  Yuquan Chen,et al.  Stability for nonlinear fractional order systems: an indirect approach , 2017 .

[34]  Hua Zhong,et al.  Sliding mode control with a second-order switching law for a class of nonlinear fractional order systems , 2016 .

[35]  Jun-Guo Lu,et al.  Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI Approach , 2009, IEEE Transactions on Automatic Control.

[36]  Bing Liu,et al.  Observer design for a class of nonlinear fractional-order systems with unknown input , 2017, J. Frankl. Inst..