A direct algorithm for solution of incompressible three-dimensional unsteady Navier-Stokes equations

A direct, implicit, numerical solution algorithm, with second-order accuracy in space and time, is constructed for the three-dimensional unsteady incompressible Navier-Stokes equations formulated in terms of velocity and vorticity, using generalized orthogonal coordinates to achieve the accurate solution of complex viscous flow configurations. A numerically stable, efficient, direct inversion procedure is developed for the computationally intensive divergence-curl elliptic velocity problem. This overdetermined partial differential operator is first formulated as a uniquely determined, nonsingular matrix-vector problem; this aspect of the procedure is a unique feature of the present analysis. The three-dimensional vorticity-transport equation is solved by a modified factorization technique which completely eliminates the need for any block-matrix inversions and only scalar tridiagonal matrices need to be inverted. The method is applied to the test problem of the three-dimensional flow within a shear-driven cubical box. Coherent streamwise vortex structures are observed within the steady-state flow at Re = 100.