Implicit Representation of Rational Parametric Surfaces

In many applications we need to compute the implicit representation of rational parametric surfaces. Previously, resultants and Grobner bases have been applied to this problem. However, these techniques at times result in an extraneous factors along with the implicit equation and fail altogether when a parametrization has base points. In this paper we present algorithms to implicitize rational parametric surfaces with and without base points. One of the strength of the algorithms lies in the fact that we do not use multivariate factorization. The base points blow up to rational curves on the surface and we present techniques to compute the rational parametrization of the blow up curves.

[1]  George Salmon Lessons introductory to the modern higher algebra , 1885 .

[2]  R. Loos Generalized Polynomial Remainder Sequences , 1983 .

[3]  F. Morley,et al.  New Results in Elimination , 1927 .

[4]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling: An Introduction , 1989 .

[5]  Dinesh Manocha,et al.  Implicitizing Rational Parametric Surfaces , 1990 .

[6]  Nicholas M. Patrikalakis,et al.  Surface-to-surface intersections , 1993, IEEE Computer Graphics and Applications.

[7]  Doug Ierardi,et al.  Quantifier elimination in the theory of an algebraically-closed field , 1989, STOC '89.

[8]  Erich Kaltofen,et al.  Factorization of Polynomials , 1983 .

[9]  Robin Hartshorne,et al.  Algebraic geometry , 1977, Graduate texts in mathematics.

[10]  John F. Canny,et al.  Generalized Characteristic Polynomials , 1988, ISSAC.

[11]  James R. Munkres,et al.  Topology; a first course , 1974 .

[12]  John F. Canny,et al.  Generalised Characteristic Polynomials , 1990, J. Symb. Comput..

[13]  Virgil Snyder Selected Topics in Algebraic Geometry , 1970 .

[14]  D. Mumford Algebraic Geometry I: Complex Projective Varieties , 1981 .

[15]  Dinesh Manocha,et al.  Efficient techniques for multipolynomial resultant algorithms , 1991, ISSAC '91.

[16]  A. L. Dixon The Eliminant of Three Quantics in two Independent Variables , 1909 .

[17]  Bruno Buchberger,et al.  Applications of Gro¨bner bases in non-linear computational geometry , 1988 .

[18]  C. Hoffmann Algebraic curves , 1988 .

[19]  A. Clebsch Ueber die Abbildung algebraischer Flächen, insbesondere der vierten und fünften Ordnung , 1869 .

[20]  Joe Warren,et al.  On the Applications of Multi-Equational Resultants , 1988 .

[21]  Ron Goldman,et al.  Implicit representation of parametric curves and surfaces , 1984, Comput. Vis. Graph. Image Process..

[22]  Bruno Buchberger,et al.  Applications of Gröbner Bases in Non-linear Computational Geometry , 1987, Trends in Computer Algebra.

[23]  E. Chionh Base points, resultants, and the implicit representation of rational surfaces , 1990 .

[24]  Chandrajit L. Bajaj,et al.  Computations with Algebraic Curves , 1988, ISSAC.