Symmetries of a class of nonlinear third-order partial differential equations

[1]  Elizabeth L. Mansfield,et al.  Applications of the Differential Algebra Package diffgrob2 to Classical Symmetries of Differential Equations , 1997, J. Symb. Comput..

[2]  B. Fuchssteiner Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation , 1996 .

[3]  P. Olver,et al.  Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Peter A. Clarkson,et al.  Nonclassical symmetry reductions of the Boussinesq equation , 1995 .

[5]  C. Gilson,et al.  Factorization and Painleve analysis of a class of nonlinear third-order partial differential equations , 1995 .

[6]  A. Fokas On a class of physically important integrable equations , 1994 .

[7]  P. Rosenau,et al.  Nonlinear dispersion and compact structures. , 1994, Physical review letters.

[8]  P. Clarkson,et al.  Symmetry reductions and exact solutions of shallow water wave equations , 1994, solv-int/9409003.

[9]  Peter J. Olver,et al.  Direct reduction and differential constraints , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[10]  Elizabeth L. Mansfield,et al.  On a Shallow Water Wave Equation , 1994, solv-int/9401003.

[11]  Elizabeth L. Mansfield,et al.  Algorithms for the Nonclassical Method of Symmetry Reductions , 1994, SIAM J. Appl. Math..

[12]  Fred Cooper,et al.  Solitons in the Camassa-Holm shallow water equation , 1993, patt-sol/9311006.

[13]  Darryl D. Holm,et al.  A New Integrable Shallow Water Equation , 1994 .

[14]  Andrew Pickering,et al.  A perturbative Painleve´ approach to nonlinear differential equations , 1993 .

[15]  Philip Broadbridge,et al.  Nonclassical symmetry solutions and the methods of Bluman–Cole and Clarkson–Kruskal , 1993 .

[16]  Elizabeth L. Mansfield,et al.  Symmetry reductions and exact solutions of a class of nonlinear heat equations , 1993, solv-int/9306002.

[17]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[18]  Hyman,et al.  Compactons: Solitons with finite wavelength. , 1993, Physical review letters.

[19]  Elizabeth L. Mansfield,et al.  Diffgrob2: A symbolic algebra package for analysing systems of PDE using MAPLE , 1993 .

[20]  W. Ames,et al.  Optimal numerical algorithms , 1992 .

[21]  E. Pucci Similarity reductions of partial differential equations , 1992 .

[22]  M. C. Nucci,et al.  The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh-Nagumo equation , 1992 .

[23]  E. M. Vorob’ev Symmetries of compatibility conditions for systems of differential equations , 1992 .

[24]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[25]  Gregory J. Reid,et al.  Algorithms for reducing a system of PDEs to standard form, determining the dimension of its solution space and calculating its Taylor series solution , 1991, European Journal of Applied Mathematics.

[26]  Willy Hereman,et al.  The computer calculation of Lie point symmetries of large systems of differential equations , 1991 .

[27]  R. Gorenflo,et al.  A noncharacteristic cauchy problem for the heat equation , 1991, Acta Applicandae Mathematicae.

[28]  S. Lou,et al.  A note on the new similarity reductions of the Boussinesq equation , 1990 .

[29]  G. Reid,et al.  A triangularization algorithm which determines the Lie symmetry algebra of any system of PDEs , 1990 .

[30]  Victor A. Galaktionov,et al.  On new exact blow-up solutions for nonlinear heat conduction equations with source and applications , 1990, Differential and Integral Equations.

[31]  M. Kruskal,et al.  New similarity reductions of the Boussinesq equation , 1989 .

[32]  Decio Levi,et al.  Non-classical symmetry reduction: example of the Boussinesq equation , 1989 .

[33]  Athanassios S. Fokas,et al.  Hodograph transformations of linearizable partial differential equations , 1989 .

[34]  A. A. Samarskii,et al.  A quasilinear heat equation with a source: Peaking, localization, symmetry exact solutions, asymptotics, structures , 1988 .

[35]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[36]  B. Dorizzi,et al.  The weak‐Painlevé property as a criterion for the integrability of dynamical systems , 1985 .

[37]  Yu. I. Shokin,et al.  The Method of Differential Approximation , 1983 .

[38]  P. Olver,et al.  The Connection between Partial Differential Equations Soluble by Inverse Scattering and Ordinary Differential Equations of Painlevé Type , 1983 .

[39]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[40]  B. Dorizzi,et al.  Painlevé Conjecture Revisited , 1982 .

[41]  I. Freund,et al.  Two-Photon X-Ray Emission from Inner-Shell Transitions , 1982 .

[42]  Athanassios S. Fokas,et al.  Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .

[43]  B. Fuchssteiner The Lie Algebra Structure of Nonlinear Evolution Equations Admitting Infinite Dimensional Abelian Symmetry Groups , 1981 .

[44]  M. Ablowitz,et al.  A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .

[45]  M. Ablowitz,et al.  Nonlinear evolution equations and ordinary differential equations of painlevè type , 1978 .

[46]  Bengt Fornberg,et al.  A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[47]  R. Hirota,et al.  N-Soliton Solutions of Model Equations for Shallow Water Waves , 1976 .

[48]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[49]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[50]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[51]  D. Peregrine Calculations of the development of an undular bore , 1966, Journal of Fluid Mechanics.