Benchmark computations of diffuse interface models for two‐dimensional bubble dynamics

SUMMARY Diffuse interface models for incompressible two-phaseflow with large density ratios are tested on benchmark configurations for a two-dimensional bubble rising in liquid columns. The benchmark quantities circularity, center of mass, and mean rise velocity are compared with reference solutions from Hysing et al. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  Irina Singer-Loginova,et al.  The phase field technique for modeling multiphase materials , 2008 .

[2]  J. Lowengrub,et al.  Two-phase flow in complex geometries: A diffuse domain approach. , 2010, Computer modeling in engineering & sciences : CMES.

[3]  Axel Voigt,et al.  AMDiS: adaptive multidimensional simulations , 2007 .

[4]  Harald Garcke,et al.  Thermodynamically Consistent Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities , 2010, 1011.0528.

[5]  Fawang Liu,et al.  Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..

[6]  D. Jacqmin Regular Article: Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling , 1999 .

[7]  M. Gurtin,et al.  TWO-PHASE BINARY FLUIDS AND IMMISCIBLE FLUIDS DESCRIBED BY AN ORDER PARAMETER , 1995, patt-sol/9506001.

[8]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[9]  Haijun Wu,et al.  A Posteriori Error Estimates and an Adaptive Finite Element Method for the Allen–Cahn Equation and the Mean Curvature Flow , 2005, J. Sci. Comput..

[10]  L. Quartapelle,et al.  A projection FEM for variable density incompressible flows , 2000 .

[11]  D. Kuzmin,et al.  Quantitative benchmark computations of two‐dimensional bubble dynamics , 2009 .

[12]  David Kay,et al.  Efficient Numerical Solution of Cahn-Hilliard-Navier-Stokes Fluids in 2D , 2007, SIAM J. Sci. Comput..

[13]  Jie Shen,et al.  A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities , 2010, SIAM J. Sci. Comput..

[14]  Walter Villanueva,et al.  Some generic capillary-driven flows , 2006 .

[15]  Franck Boyer,et al.  A theoretical and numerical model for the study of incompressible mixture flows , 2002 .

[16]  Chang Shu,et al.  Diffuse interface model for incompressible two-phase flows with large density ratios , 2007, J. Comput. Phys..

[17]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  Xiaobing Feng,et al.  Fully Discrete Finite Element Approximations of the Navier-Stokes-Cahn-Hilliard Diffuse Interface Model for Two-Phase Fluid Flows , 2006, SIAM J. Numer. Anal..

[19]  Heike Emmerich,et al.  Advances of and by phase-field modelling in condensed-matter physics , 2008 .

[20]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[21]  Peng Song,et al.  A diffuse-interface method for two-phase flows with soluble surfactants , 2011, J. Comput. Phys..

[22]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[23]  G. Amberg,et al.  The splash of a solid sphere impacting on a liquid surface: Numerical simulation of the influence of wetting , 2009 .

[24]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .