Building supertrees: an empirical assessment using the grass family (Poaceae).

Large and comprehensive phylogenetic trees are desirable for studying macroevolutionary processes and for classification purposes. Such trees can be obtained in two different ways. Either the widest possible range of taxa can be sampled and used in a phylogenetic analysis to produce a "big tree," or preexisting topologies can be used to create a supertree. Although large multigene analyses are often favored, combinable data are not always available, and supertrees offer a suitable solution. The most commonly used method of supertree reconstruction, matrix representation with parsimony (MRP), is presented here. We used a combined data set for the Poaceae to (1) assess the differences between an approach that uses combined data and one that uses different MRP modifications based on the character partitions and (2) investigate the advantages and disadvantages of these modifications. Baum and Ragan and Purvis modifications gave similar results. Incorporating bootstrap support associated with pre-existing topologies improved Baum and Ragan modification and its similarity with a combined analysis. Finally, we used the supertree reconstruction approach on 55 published phylogenies to build one of most comprehensive phylogenetic trees published for the grass family including 403 taxa and discuss its strengths and weaknesses in relation to other published hypotheses.

[1]  O. Bininda-Emonds,et al.  Properties of matrix representation with parsimony analyses. , 1998, Systematic biology.

[2]  K. Hilu,et al.  Application of the matK gene sequences to grass systematics , 1996 .

[3]  E. Kellogg Relationships of cereal crops and other grasses. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Bull,et al.  An Empirical Test of Bootstrapping as a Method for Assessing Confidence in Phylogenetic Analysis , 1993 .

[5]  E. Kellogg Who's related to whom? Recent results from molecular systematic studies. , 1998, Current opinion in plant biology.

[6]  H. Clifford,et al.  The Classification of Poaceae: Subfamilies and Supertribes , 1985 .

[7]  M. Pagel,et al.  The comparative method in evolutionary biology , 1991 .

[8]  K. Hilu,et al.  Prolamin and immunological studies in the Poaceae. IV: Subfamily Panicoideae , 1993 .

[9]  M. P. Cummings,et al.  Slipped-strand mispairing in a plastid gene: rpoC2 in grasses (Poaceae). , 1994, Molecular biology and evolution.

[10]  Andy Purvis,et al.  Phylogenetic supertrees: Assembling the trees of life. , 1998, Trends in ecology & evolution.

[11]  A. Purvis A composite estimate of primate phylogeny. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[12]  F. Ronquist Matrix representation of trees, redundancy, and weighting , 1996 .

[13]  B. Gaut,et al.  Patterns of genetic diversification within the Adh gene family in the grasses (Poaceae). , 1999, Molecular biology and evolution.

[14]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[15]  J. L. Gittleman,et al.  Truth or Consequences: Effects of Phylogenetic Accuracy on Two Comparative Methods , 1994 .

[16]  K. Hilu,et al.  Electrophoretic and immunological studies of prolamins in the Poaceae. II, Phylogenetic affinities of the Aristideae , 1991 .

[17]  M. Ragan Phylogenetic inference based on matrix representation of trees. , 1992, Molecular phylogenetics and evolution.

[18]  J. L. Gittleman,et al.  Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia) , 1999, Biological reviews of the Cambridge Philosophical Society.

[19]  M. Clegg,et al.  A chloroplast DNA mutational hotspot and gene conversion in a noncoding region near rbcL in the grass family (Poaceae) , 1993, Current Genetics.

[20]  A. Zharkikh,et al.  Estimation of confidence in phylogeny: the complete-and-partial bootstrap technique. , 1995, Molecular phylogenetics and evolution.

[21]  H. Linder,et al.  Haustorial synergids: an important character in the systematics of danthonioid grasses (Arundinoideae: Poaceae)? , 1994 .

[22]  V. Hemleben,et al.  Molecular phylogenetic relationships inAveneae (Poaceae) species and other grasses as inferred from ITS1 and ITS2 rDNA sequences , 1998, Plant Systematics and Evolution.

[23]  B. Morton,et al.  Molecular phylogenetics of Poaceae: an expanded analysis of rbcL sequence data. , 1996, Molecular phylogenetics and evolution.

[24]  K. Hilu,et al.  The matK gene: sequence variation and application in plant systematics. , 1997, American journal of botany.

[25]  Andy Purvis,et al.  A Modification to Baum and Ragan's Method for Combining Phylogenetic Trees , 1995 .

[26]  B. Hall,et al.  Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. , 1999, Molecular biology and evolution.

[27]  J. P. Gustafson,et al.  Analysis of phylogenetic relationships in the Triticeae tribe using RFLPs , 1993, Theoretical and Applied Genetics.

[28]  L. Watson,et al.  On the Classification of the Chloridoideae (Poaceae) , 1997 .

[29]  E. Kellogg,et al.  Intraspecific and interspecific variation in 5S RNA genes are decoupled in diploid wheat relatives. , 1995, Genetics.

[30]  A. Purvis,et al.  Building phylogenies: are the big easy? , 1997, Trends in ecology & evolution.

[31]  Jerrold I. Davis,et al.  Phylogenetic structure in the grass family (Poaceae) as inferred from chloroplast DNA restriction site variation , 1993 .

[32]  G. Petersen,et al.  Phylogenetic analysis of the Triticeae (Poaceae) based on rpoA sequence data. , 1997, Molecular phylogenetics and evolution.

[33]  Arnold G. Kluge,et al.  A Numerical Approach to Phylogenetic Systematics , 1970 .

[34]  M. Pagel Inferring the historical patterns of biological evolution , 1999, Nature.

[35]  S. Warwick,et al.  Phylogeny of North American Festuca (Poaceae) and related genera using chloroplast DNA restriction site variation , 1992 .

[36]  M. Steel The complexity of reconstructing trees from qualitative characters and subtrees , 1992 .

[37]  V. Hemleben,et al.  Distribution and complex organization of satellite DNA sequences in Aveneae species. , 1996, Genome.

[38]  Jerrold I. Davis,et al.  A phylogeny of the grass family (Poaceae), as inferred from eight character sets. , 2000 .

[39]  K. H. Asay,et al.  A Molecular Phylogeny of the Grass Family (Poaceae) Based on the Sequences of Nuclear Ribosomal DNA (ITS) , 1998 .

[40]  H. Linder,et al.  Sequences of the grass-specific insert in the chloroplast rpoC2 gene elucidate generic relationships of the Arundinoideae (Poaceae) , 1998 .

[41]  K. Hilu,et al.  Systematics of gramineae a cluster analysis study , 1982 .

[42]  E. Kellogg,et al.  Granule-bound starch synthase: structure, function, and phylogenetic utility. , 1998, Molecular biology and evolution.

[43]  B. Baum A phylogenetic analysis of the tribe Triticeae (Poaceae) based on morphological characters of the genera , 1983 .

[44]  A. Purvis,et al.  Are big trees indeed easy? Reply from A. Purvis and D.L.J. Quicke. , 1997, Trends in ecology & evolution.

[45]  E. Buckler,et al.  Zea systematics: ribosomal ITS evidence. , 1996, Molecular biology and evolution.

[46]  D. Soltis,et al.  Inferring complex phylogenies using parsimony: an empirical approach using three large DNA data sets for angiosperms. , 1998, Systematic biology.

[47]  M Steel,et al.  Simple but fundamental limitations on supertree and consensus tree methods. , 2000, Systematic biology.

[48]  M J Sanderson,et al.  Improved bootstrap confidence limits in large-scale phylogenies, with an example from Neo-Astragalus (Leguminosae). , 2000, Systematic biology.

[49]  K. H. Asay,et al.  Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. , 1995, Genome.

[50]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[51]  L. Watson,et al.  THE CLASSIFICATION OF POACEAE SUBFAMILY POOIDEAE , 1982 .

[52]  K. Hilu,et al.  Phylogeny of Poaceae Inferred from matK Sequences , 1999 .

[53]  N. Goldman,et al.  Are big trees indeed easy? , 1997, Trends in ecology & evolution.

[54]  W. Kress,et al.  Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences , 2000 .

[55]  E. Kellogg,et al.  Testing for Phylogenetic Conflict Among Molecular Data Sets in the Tribe Triticeae (Gramineae) , 1996 .

[56]  S. Mathews,et al.  The phytochrome gene family in grasses (Poaceae): a phylogeny and evidence that grasses have a subset of the loci found in dicot angiosperms. , 1996, Molecular biology and evolution.

[57]  P. Peterson,et al.  Phylogeny of North American oryzoid grasses as construed from maps of plastid DNA restriction sites , 1993 .

[58]  K. H. Asay,et al.  Molecular phylogeny of the Pooideae (Poaceae) based on nuclear rDNA (ITS) sequences , 1995, Theoretical and Applied Genetics.

[59]  B. Baum Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees , 1992 .

[60]  K. H. Asay,et al.  Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. , 1994, Genome.

[61]  D. Soltis,et al.  Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. , 2000, Systematic biology.

[62]  M. Clegg,et al.  EVOLUTIONARY ANALYSIS OF THE LARGE SUBUNIT OF CARBOXYLASE (rbcL) NUCLEOTIDE SEQUENCE AMONG THE GRASSES (GRAMINEAE) , 1990, Evolution; international journal of organic evolution.

[63]  D. Hillis Inferring complex phytogenies , 1996, Nature.

[64]  K. Bremer THE LIMITS OF AMINO ACID SEQUENCE DATA IN ANGIOSPERM PHYLOGENETIC RECONSTRUCTION , 1988, Evolution; international journal of organic evolution.

[65]  S. Nadot,et al.  A phylogenetic analysis of monocotyledons based on the chloroplast gene rps4, using parsimony and a new numerical phenetics method. , 1995, Molecular phylogenetics and evolution.

[66]  B. Baum,et al.  ASSESSMENT OF THE GENOMIC SYSTEM OF CLASSIFICATION IN THE TRITICEAE , 1987 .

[67]  S. Nadot,et al.  The chloroplast generps 4 as a tool for the study ofPoaceae phylogeny , 1994, Plant Systematics and Evolution.

[68]  J. Wendel,et al.  A Phylogeny of the Grass Family (Poaceae) Based on ndhF Sequence Data , 1995 .

[69]  W. Zhang,et al.  Phylogeny of the grass family (Poaceae) from rpl16 intron sequence data. , 2000, Molecular phylogenetics and evolution.

[70]  N. Barker The relationships of Amphipogon, Elytrophorus and Cyperochloa (Poaceae) as suggested by rbcL sequence data , 1997 .

[71]  R. Sokal,et al.  A METHOD FOR DEDUCING BRANCHING SEQUENCES IN PHYLOGENY , 1965 .

[72]  E. Kellogg TOOLS FOR STUDYING THE CHLOROPLAST GENOME IN THE TRITICEAE (GRAMINEAE): AN ECORI MAP, A DIAGNOSTIC DELETION, AND SUPPORT FOR BROMUS AS AN OUTGROUP , 1992 .

[73]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[74]  E. Harley,et al.  Polyphyly of Arundinoideae (Poaceae): Evidence from rbcL Sequence Data , 1995 .

[75]  R. Olmstead,et al.  Phylogeny of Poaceae subfamily Pooideae based on chloroplast ndhF gene sequences. , 1997, Molecular phylogenetics and evolution.

[76]  M. Ragan,et al.  Reply to A. G. Rodrigo's "A Comment on Baum's Method for Combining Phylogenetic Trees" , 1993 .

[77]  A. Rodrigo,et al.  Likelihood-based tests of topologies in phylogenetics. , 2000, Systematic biology.

[78]  E. Zimmer,et al.  Ribosomal RNA sequences for inferring phylogeny within the grass family (Poaceae) , 1988, Plant Systematics and Evolution.

[79]  A. Rodrigo,et al.  Calibrating the bootstrap test of monophyly. , 1993, International journal for parasitology.

[80]  Leigh A. Johnson,et al.  Assessing Congruence: Empirical Examples from Molecular Data , 1998 .

[81]  N. J. Chatterton,et al.  A molecular phylogeny of the subfamily Arundinoideae (Poaceae) based on sequences of rDNA , 1995 .

[82]  J. Doyle,et al.  A phylogenetic analysis of chloroplast DNA restriction site variation inPoaceae subfam.Pooideae , 1990, Plant Systematics and Evolution.

[83]  E. Kellogg Comments on genomic genera in the Triticeae (Poaceae) , 1989 .

[84]  Junhyong Kim,et al.  GENERAL INCONSISTENCY CONDITIONS FOR MAXIMUM PARSIMONY: EFFECTS OF BRANCH LENGTHS AND INCREASING NUMBERS OF TAXA , 1996 .