Parareal Time-Stepping for Limit-Cycle Computation of the Incompressible Navier-Stokes Equations with Uncertain Periodic Dynamics

The computation of limit-cycles in time periodic flow problems plays a crucial role in quantifying its dynamical characteristics. Since in many applications model parameters are often subject to uncertainty, the limit-cycle becomes a stochastic quantity itself. In this work we introduce two types of shooting methods based on Polynomial Chaos and the stochastic Galerkin projection. Polynomial Chaos is known to exhibit a convergence breakdown in time, which our proposed algorithms are able to overcome. The first algorithm is a re-interpretation of a Newton-Galerkin method as a single shooting approach. The second one extends this idea using the parareal algorithm on a time domain decomposition. It uses a fine grid propagator, which can be computed in parallel and a coarse grid propagator defined by a low order Polynomial Chaos expansion. We evaluate the convergence properties on a suitable benchmark problem (time periodic vortex shedding) showing promising results in capturing accurately the periodic dynamics of the flow.

[1]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[2]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[3]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[4]  O. L. Maître,et al.  Asynchronous Time Integration for Polynomial Chaos Expansion of Uncertain Periodic Dynamics , 2010 .

[5]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[6]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2010, SIAM Rev..

[7]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[8]  Catherine Elizabeth Powell,et al.  Preconditioning Steady-State Navier-Stokes Equations with Random Data , 2012, SIAM J. Sci. Comput..

[9]  Vincent Heuveline,et al.  A Newton-Galerkin Method for Fluid Flow Exhibiting Uncertain Periodic Dynamics , 2014, SIAM/ASA J. Uncertain. Quantification.

[10]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[11]  Chris L. Pettit,et al.  Uncertainty quantification of limit-cycle oscillations , 2006, J. Comput. Phys..

[12]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[13]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[14]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[15]  Y. Duguet,et al.  Relative periodic orbits in transitional pipe flow , 2008, 0807.2580.

[16]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[17]  Stefan Turek,et al.  Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.

[18]  O. L. Maître,et al.  Uncertainty propagation in CFD using polynomial chaos decomposition , 2006 .

[19]  Catherine Elizabeth Powell,et al.  Preconditioning Stochastic Galerkin Saddle Point Systems , 2010, SIAM J. Matrix Anal. Appl..

[20]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[21]  Martin J. Gander,et al.  Analysis of Two Parareal Algorithms for Time-Periodic Problems , 2013, SIAM J. Sci. Comput..

[22]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[23]  N. Wiener The Homogeneous Chaos , 1938 .