An algorithm for the long run average cost problem for linear systems with non-observed Markov jump parameters

This paper addresses the problem of long run average cost for linear systems with non-observed Markov jump parameters. We present an algorithm that relies on the approximation of the (infinite horizon) cost via its finite horizon version and uses an evolutionary-based algorithm for the finite horizon cost. A numerical example illustrates the proposed algorithm.

[1]  Carlos E. de Souza,et al.  Robust Stability of a Class of Uncertain Markov Jump Nonlinear Systems , 2006, IEEE Transactions on Automatic Control.

[2]  M. Fragoso,et al.  ℋ︁∞ filtering for discrete‐time linear systems with Markovian jumping parameters† , 2003 .

[3]  Jiming Liu,et al.  A genetic agent-based negotiation system , 2001, Comput. Networks.

[4]  O. L. V. Costa,et al.  Finite horizon quadratic optimal control and a separation principle for Markovian jump linear systems , 2003, IEEE Trans. Autom. Control..

[5]  W. L. Koning,et al.  Discrete-time Markovian jump linear systems , 1993 .

[6]  Eduardo F. Costa,et al.  Weak controllability and weak stabilizability concepts for linear systems with Markov jump parameters , 2006, 2006 American Control Conference.

[7]  Tamer Basar,et al.  Receding horizon control of jump linear systems and a macroeconomic policy problem , 1999 .

[8]  Marcelo D. Fragoso,et al.  A New Approach to Detectability of Discrete-Time Infinite Markov Jump Linear Systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[9]  Marcelo D. Fragoso,et al.  A Unified Approach for Stochastic and Mean Square Stability of Continuous-Time Linear Systems with Markovian Jumping Parameters and Additive Disturbances , 2005, SIAM J. Control. Optim..

[10]  L. Breuer Introduction to Stochastic Processes , 2022, Statistical Methods for Climate Scientists.

[11]  J. D. Do Val,et al.  Weak detectability and the linear-quadratic control problem of discrete-time Markov jump linear systems , 2002 .

[12]  Chao-Hsien Chu,et al.  Genetic algorithms for communications network design - an empirical study of the factors that influence performance , 2001, IEEE Trans. Evol. Comput..

[13]  Vilma A. Oliveira,et al.  Digital implementation of a magnetic suspension control system for laboratory experiments , 1999 .

[14]  Alessandro N. Vargas,et al.  Bounds for the Finite Horizon Cost of Markov Jump Linear Systems with Additive Noise and Convergence for the Long Run Average Cost , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[15]  Eduardo F. Costa,et al.  Stabilizability and positiveness of solutions of the jump linear quadratic problem and the coupled algebraic Riccati equation , 2005, IEEE Transactions on Automatic Control.

[16]  Ricardo Losada,et al.  Solution of the state-dependent noise optimal control problem in terms of Lyapunov iterations , 1999, Autom..

[17]  M. Fragoso,et al.  Discrete-time LQ-optimal control problems for infinite Markov jump parameter systems , 1995, IEEE Trans. Autom. Control..

[18]  Anabela Simões,et al.  Transposition versus crossover: an empirical study , 1999 .