Adaptive finite difference solutions of Liouville equations in computational uncertainty quantification
暂无分享,去创建一个
[1] V. E. Denny,et al. A new method for solving two-point boundary value problems using optimal node distribution , 1972 .
[2] V. Pereyra,et al. An adaptive finite difference solver for nonlinear two point boundary problems with mild boundary layers. , 1975 .
[3] Terje Aven,et al. Models and model uncertainty in the context of risk analysis , 2003, Reliab. Eng. Syst. Saf..
[4] J. Hyman. Accurate Monotonicity Preserving Cubic Interpolation , 1983 .
[5] Nail K. Yamaleev. Minimization of the truncation error by grid adaptation , 1999 .
[6] John M. Stockie,et al. A Moving Mesh Method for One-dimensional Hyperbolic Conservation Laws , 2000, SIAM J. Sci. Comput..
[7] Stephen C. Hora,et al. Aleatory and epistemic uncertainty in probability elicitation with an example from hazardous waste management , 1996 .
[8] J. A. White,et al. On Selection of Equidistributing Meshes for Two-Point Boundary-Value Problems , 1979 .
[9] Robert D. Russell,et al. Adaptivity with moving grids , 2009, Acta Numerica.
[10] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[11] R. LeVeque. Numerical methods for conservation laws , 1990 .
[12] Chris L. Pettit,et al. Uncertainty Quantification in Aeroelasticity: Recent Results and Research Challenges , 2004 .
[13] D. Xiu. Fast numerical methods for stochastic computations: A review , 2009 .
[14] Graham F. Carey,et al. GRADING FUNCTIONS AND MESH REDISTRIBUTION , 1985 .
[15] A. M. Hasofer,et al. Exact and Invariant Second-Moment Code Format , 1974 .
[16] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[17] P. E. Gill,et al. An algorithm for the integration of unequally spaced data , 1972, Comput. J..
[18] Qiang Xu,et al. MacCormack-TVD Finite Difference Solution for Dam Break Hydraulics over Erodible Sediment Beds , 2015 .
[19] Chris L. Pettit,et al. Spectral and multiresolution Wiener expansions of oscillatory stochastic processes , 2006 .
[20] Paul Kutler,et al. Optimal nodal point distribution for improved accuracy in computational fluid dynamics , 1979 .
[21] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[22] Kevin T. Chu,et al. Boosting the accuracy of finite difference schemes via optimal time step selection and non-iterative defect correction , 2008, Appl. Math. Comput..
[23] Marc Gerritsma,et al. Time‐Dependent Polynomial Chaos , 2008 .
[24] Jaromír Horácek,et al. Compressible Flows of Viscous Fluid in 3D Channel , 2013, ENUMATH.
[25] Prakash Vedula,et al. Direct quadrature method of moments solution of the Fokker–Planck equation , 2008 .
[26] Olivier P. Le Maître,et al. Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..
[27] Ami Harten,et al. Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .
[28] George E. Karniadakis,et al. Time-dependent generalized polynomial chaos , 2010, J. Comput. Phys..
[29] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[30] G. Tryggvason,et al. A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .
[31] Bret Stanford,et al. Uncertainty Quantification in Aeroelasticity , 2017, Uncertainty Quantification in Computational Fluid Dynamics.
[32] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[33] H. Dwyer. Grid adaption for problems in fluid dynamics , 1984 .
[34] Habib N. Najm,et al. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .