Adaptive finite difference solutions of Liouville equations in computational uncertainty quantification

In the context of computational uncertainty quantification, we present a finite difference based solution of a Liouville equation that describes the evolution of a conditional probability density function depending on state variables and model input parameters. The efficiency of the numerical solution is enhanced through (i) a quadrature-based sampling of random variables corresponding to model input parameters and (ii) time-adaptive methods for determining the computational grid in the space of state or response variables. The proposed method, which allows for accurate and computationally efficient determination of the conditional density and resulting statistical moments, is applied to a decay problem and a problem which contains nonlinear deterministic dynamics with multiple equilibrium points. Through comparison with exact solutions and direct numerical simulation on a fixed time-invariant grid, it is demonstrated that the proposed methodology not only is able to accurately predict the large time behavior of the response density but also can significantly reduce the computational costs.

[1]  V. E. Denny,et al.  A new method for solving two-point boundary value problems using optimal node distribution , 1972 .

[2]  V. Pereyra,et al.  An adaptive finite difference solver for nonlinear two point boundary problems with mild boundary layers. , 1975 .

[3]  Terje Aven,et al.  Models and model uncertainty in the context of risk analysis , 2003, Reliab. Eng. Syst. Saf..

[4]  J. Hyman Accurate Monotonicity Preserving Cubic Interpolation , 1983 .

[5]  Nail K. Yamaleev Minimization of the truncation error by grid adaptation , 1999 .

[6]  John M. Stockie,et al.  A Moving Mesh Method for One-dimensional Hyperbolic Conservation Laws , 2000, SIAM J. Sci. Comput..

[7]  Stephen C. Hora,et al.  Aleatory and epistemic uncertainty in probability elicitation with an example from hazardous waste management , 1996 .

[8]  J. A. White,et al.  On Selection of Equidistributing Meshes for Two-Point Boundary-Value Problems , 1979 .

[9]  Robert D. Russell,et al.  Adaptivity with moving grids , 2009, Acta Numerica.

[10]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[11]  R. LeVeque Numerical methods for conservation laws , 1990 .

[12]  Chris L. Pettit,et al.  Uncertainty Quantification in Aeroelasticity: Recent Results and Research Challenges , 2004 .

[13]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[14]  Graham F. Carey,et al.  GRADING FUNCTIONS AND MESH REDISTRIBUTION , 1985 .

[15]  A. M. Hasofer,et al.  Exact and Invariant Second-Moment Code Format , 1974 .

[16]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[17]  P. E. Gill,et al.  An algorithm for the integration of unequally spaced data , 1972, Comput. J..

[18]  Qiang Xu,et al.  MacCormack-TVD Finite Difference Solution for Dam Break Hydraulics over Erodible Sediment Beds , 2015 .

[19]  Chris L. Pettit,et al.  Spectral and multiresolution Wiener expansions of oscillatory stochastic processes , 2006 .

[20]  Paul Kutler,et al.  Optimal nodal point distribution for improved accuracy in computational fluid dynamics , 1979 .

[21]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[22]  Kevin T. Chu,et al.  Boosting the accuracy of finite difference schemes via optimal time step selection and non-iterative defect correction , 2008, Appl. Math. Comput..

[23]  Marc Gerritsma,et al.  Time‐Dependent Polynomial Chaos , 2008 .

[24]  Jaromír Horácek,et al.  Compressible Flows of Viscous Fluid in 3D Channel , 2013, ENUMATH.

[25]  Prakash Vedula,et al.  Direct quadrature method of moments solution of the Fokker–Planck equation , 2008 .

[26]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[27]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[28]  George E. Karniadakis,et al.  Time-dependent generalized polynomial chaos , 2010, J. Comput. Phys..

[29]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[30]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[31]  Bret Stanford,et al.  Uncertainty Quantification in Aeroelasticity , 2017, Uncertainty Quantification in Computational Fluid Dynamics.

[32]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[33]  H. Dwyer Grid adaption for problems in fluid dynamics , 1984 .

[34]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .