Modeling Si/SiGe quantum dot variability induced by interface disorder reconstructed from multiperspective microscopy

SiGe heteroepitaxial growth yields pristine host material for quantum dot qubits, but residual interface disorder can lead to qubit-to-qubit variability that might pose an obstacle to reliable SiGe-based quantum computing. We demonstrate a technique to reconstruct 3D interfacial atomic structure spanning multiqubit areas by combining data from two verifiably atomic-resolution microscopy techniques. Utilizing scanning tunneling microscopy (STM) to track molecular beam epitaxy (MBE) growth, we image surface atomic structure following deposition of each heterostructure layer revealing nanosized SiGe undulations, disordered strained-Si atomic steps, and nonconformal uncorrelated roughness between interfaces. Since phenomena such as atomic intermixing during subsequent overgrowth inevitably modify interfaces, we measure post-growth structure via cross-sectional high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Features such as nanosized roughness remain intact, but atomic step structure is indiscernible in $1.0\pm 0.4$~nm-wide intermixing at interfaces. Convolving STM and HAADF-STEM data yields 3D structures capturing interface roughness and intermixing. We utilize the structures in an atomistic multivalley effective mass theory to quantify qubit spectral variability. The results indicate (1) appreciable valley splitting (VS) variability of roughly $\pm$ $50\%$ owing to alloy disorder, and (2) roughness-induced double-dot detuning bias energy variability of order $1-10$ meV depending on well thickness. For measured intermixing, atomic steps have negligible influence on VS, and uncorrelated roughness causes spatially fluctuating energy biases in double-dot detunings potentially incorrectly attributed to charge disorder.

[1]  S. Coppersmith,et al.  Practical strategies for enhancing the valley splitting in Si/SiGe quantum wells , 2023, Physical Review B.

[2]  O. Moutanabbir,et al.  Three‐Dimensional Atomic‐Scale Tomography of Buried Semiconductor Heterointerfaces , 2022, Advanced Materials Interfaces.

[3]  B. P. Wuetz,et al.  Universal control of a six-qubit quantum processor in silicon , 2022, Nature.

[4]  Aaron M. Jones,et al.  Universal logic with encoded spin qubits in silicon , 2022, Nature.

[5]  S. Tarucha,et al.  Quantum error correction with silicon spin qubits , 2022, Nature.

[6]  M. Lagally,et al.  SiGe quantum wells with oscillating Ge concentrations for quantum dot qubits , 2021, Nature communications.

[7]  S. Coppersmith,et al.  Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots , 2021, Nature Communications.

[8]  G. Burkard,et al.  Semiconductor spin qubits , 2021, Reviews of Modern Physics.

[9]  J. Petta,et al.  Two-qubit silicon quantum processor with operation fidelity exceeding 99% , 2021, Science advances.

[10]  G. Wang,et al.  Origin of giant valley splitting in silicon quantum wells induced by superlattice barriers , 2021, Physical Review B.

[11]  S. Tarucha,et al.  Fast universal quantum gate above the fault-tolerance threshold in silicon , 2021, Nature.

[12]  S. Trellenkamp,et al.  Conveyor-mode single-electron shuttling in Si/SiGe for a scalable quantum computing architecture , 2021, npj Quantum Information.

[13]  L. Vandersypen,et al.  Quantum logic with spin qubits crossing the surface code threshold , 2021, Nature.

[14]  J. Williams,et al.  Crystalline materials for quantum computing: Semiconductor heterostructures and topological insulators exemplars , 2021, MRS Bulletin.

[15]  R. S. Ross,et al.  Materials and device simulations for silicon qubit design and optimization , 2021, MRS Bulletin.

[16]  M. Lagally,et al.  Valley splittings in Si/SiGe quantum dots with a germanium spike in the silicon well , 2021, Physical Review B.

[17]  S. Coppersmith,et al.  How Valley-Orbit States in Silicon Quantum Dots Probe Quantum Well Interfaces. , 2021, Physical review letters.

[18]  J. Petta,et al.  Probing the Variation of the Intervalley Tunnel Coupling in a Silicon Triple Quantum Dot , 2021, PRX Quantum.

[19]  Edward H. Chen,et al.  Detuning Axis Pulsed Spectroscopy of Valley-Orbital States in Si / Si - Ge Quantum Dots , 2020, 2010.04818.

[20]  H. Riemann,et al.  Large, Tunable Valley Splitting and Single-Spin Relaxation Mechanisms in a Si / Six Ge1−x Quantum Dot , 2019, Physical Review Applied.

[21]  Xuedong Hu,et al.  Effects of interface steps on the valley-orbit coupling in a Si/SiGe quantum dot , 2019, Physical Review B.

[22]  J. Petta,et al.  Single-Spin Relaxation in a Synthetic Spin-Orbit Field , 2018, Physical Review Applied.

[23]  B. Hensen,et al.  Silicon qubit fidelities approaching incoherent noise limits via pulse engineering , 2018, Nature Electronics.

[24]  Thomas McJunkin,et al.  The critical role of substrate disorder in valley splitting in Si quantum wells , 2018, Applied Physics Letters.

[25]  K. Itoh,et al.  A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% , 2018, Nature Nanotechnology.

[26]  T. Lu,et al.  Atomic-layer doping of SiGe heterostructures for atomic-precision donor devices , 2017, Physical Review Materials.

[27]  Jacob M. Taylor,et al.  A coherent spin–photon interface in silicon , 2017, Nature.

[28]  D. Leonard,et al.  Accurate Quantification of Si/SiGe Interface Profiles via Atom Probe Tomography , 2017 .

[29]  B. Swartzentruber,et al.  Heterogeneous nucleation of pits via step pinning during Si(100) homoepitaxy , 2017, 1706.05127.

[30]  X Mi,et al.  High-Resolution Valley Spectroscopy of Si Quantum Dots. , 2017, Physical review letters.

[31]  M. Lagally,et al.  Dressed photon-orbital states in a quantum dot: Intervalley spin resonance , 2016, 1608.06538.

[32]  J. R. Petta,et al.  Scalable gate architecture for a one-dimensional array of semiconductor spin qubits , 2016, 1607.07025.

[33]  Christopher J. K. Richardson,et al.  Metamorphic epitaxial materials , 2016 .

[34]  Adele E. Schmitz,et al.  Isotopically enhanced triple-quantum-dot qubit , 2015, Science Advances.

[35]  J. R. Petta,et al.  A Reconfigurable Gate Architecture for Si/SiGe Quantum Dots , 2015, 1502.01624.

[36]  J. Moussa,et al.  Multivalley effective mass theory simulation of donors in silicon , 2014, 1408.3159.

[37]  Mark Friesen,et al.  Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. , 2014, Nature nanotechnology.

[38]  Alex Zunger,et al.  Genetic design of enhanced valley splitting towards a spin qubit in silicon , 2013, Nature Communications.

[39]  M. Lagally,et al.  Nanoscale Distortions of Si Quantum Wells in Si/SiGe Quantum‐Electronic Heterostructures , 2012, Advanced materials.

[40]  Adele E. Schmitz,et al.  Coherent singlet-triplet oscillations in a silicon-based double quantum dot , 2012, Nature.

[41]  P. Kotula,et al.  Enhancement-mode buried strained silicon channel quantum dot with tunable lateral geometry , 2011, 1106.0337.

[42]  R. S. Ross,et al.  Measurement of valley splitting in high-symmetry Si/SiGe quantum dots , 2010, 1012.1363.

[43]  B. Swartzentruber,et al.  Ge diffusion at the Si(100) surface. , 2010, Physical review letters.

[44]  S. N. Coppersmith,et al.  Theory of valley-orbit coupling in a Si/SiGe quantum dot , 2009, 0902.0777.

[45]  M. Ceriotti,et al.  First principles study of Ge∕Si exchange mechanisms at the Si(001) surface , 2008 .

[46]  Gerhard Klimeck,et al.  Valley splitting in strained silicon quantum wells modeled with 2° miscuts, step disorder, and alloy disorder , 2007 .

[47]  S. Coppersmith,et al.  Controllable valley splitting in silicon quantum devices , 2006, cond-mat/0611221.

[48]  D. Ferry,et al.  Kinetic lattice Monte Carlo simulations of germanium epitaxial growth on the silicon (100) surface incorporating Si-Ge exchange , 2005 .

[49]  E. Yablonovitch,et al.  Fabrication and characterization of electrostatic Si∕SiGe quantum dots with an integrated read-out channel , 2005, cond-mat/0504046.

[50]  Gerhard Klimeck,et al.  Valley splitting in low-density quantum-confined heterostructures studied using tight-binding models , 2004 .

[51]  M. Copel,et al.  Critical role of surface steps in the alloying of Ge on Si(001). , 2004, Physical review letters.

[52]  T. Boykin,et al.  Valley splitting in strained silicon quantum wells , 2003, cond-mat/0309663.

[53]  P. Thompson,et al.  Scanning tunneling microscopy of SiGe alloy surfaces grown on Si(100) by molecular beam epitaxy , 2002 .

[54]  C. Wang,et al.  Mixed SiGe ad-dimer on Si(0 0 1): diffusion triggers intermixing , 2002 .

[55]  J. Bernholc,et al.  Surface segregation of Ge at SiGe(001) by concerted exchange pathways. , 2002, Physical review letters.

[56]  Bert Voigtländer,et al.  Fundamental processes in Si/Si and Ge/Si epitaxy studied by scanning tunneling microscopy during growth , 2001 .

[57]  F. Schäffler,et al.  Kinetic vs. strain-induced growth instabilities on vicinal Si(001) substrates , 2000 .

[58]  Leskovar,et al.  Diffusion of Ge below the Si(100) surface: theory and experiment , 2000, Physical review letters.

[59]  Swartzentruber,et al.  Scanning tunneling microscopy identification of atomic-scale intermixing on Si(100) at submonolayer Ge coverages , 2000, Physical review letters.

[60]  Friedrich Schäffler,et al.  High-mobility Si and Ge structures , 1997 .

[61]  T. Thundat,et al.  Mechanisms of strain induced roughening and dislocation multiplication in SixGe1-xthin films , 1997 .

[62]  J. Pelz,et al.  Equilibrium configuration of atomic steps on vicinal Si(001) surfaces with external biaxial strain , 1997 .

[63]  E. Fitzgerald,et al.  Line, point and surface defect morphology of graded, relaxed GeSi alloys on Si substrates , 1997 .

[64]  P. Thompson,et al.  Ge segregation during the initial stages of Si1−xGex alloy growth , 1996 .

[65]  Zhang,et al.  Step-bunching instability of vicinal surfaces under stress. , 1995, Physical review letters.

[66]  Xie,et al.  Enhanced Step Waviness on SiGe(001)-(2 x 1) Surfaces under Tensile Strain. , 1995, Physical review letters.

[67]  D. J. Lockwood,et al.  Nature and evolution of interfaces in Si/Si1-xGex superlattices , 1995 .

[68]  Kitamura,et al.  Behavior of steps on Si(001) as a function of vicinality. , 1993, Physical review. B, Condensed matter.

[69]  E. Fitzgerald,et al.  Surface morphology of related GexSi1−x films , 1992 .

[70]  Reuter,et al.  Wavy steps on Si(001). , 1992, Physical review letters.

[71]  S. Iyer,et al.  Strain relaxation and ordering in SiGe layers grown on (100), (111), and (110) Si surfaces by molecular‐beam epitaxy , 1991 .

[72]  D. Vanderbilt,et al.  Spontaneous formation of stress domains on crystal surfaces. , 1988, Physical review letters.

[73]  J. Verduijn Silicon Quantum Electronics , 2012 .