Towards a theory of practice in metaheuristics design: A machine learning perspective

A number of methodological papers published during the last years testify that a need for a thorough revision of the research methodology is felt by the operations research community – see, for example, [Barr et al., J. Heuristics 1 (1995) 9–32; Eiben and Jelasity, Proceedings of the 2002 Congress on Evolutionary Computation (CEC'2002) 582–587; Hooker, J. Heuristics 1 (1995) 33–42; Rardin and Uzsoy, J. Heuristics 7 (2001) 261–304]. In particular, the performance evaluation of nondeterministic methods, including widely studied metaheuristics such as evolutionary computation and ant colony optimization, requires the definition of new experimental protocols. A careful and thorough analysis of the problem of evaluating metaheuristics reveals strong similarities between this problem and the problem of evaluating learning methods in the machine learning field. In this paper, we show that several conceptual tools commonly used in machine learning – such as, for example, the probabilistic notion of class of instances and the separation between the training and the testing datasets – fit naturally in the context of metaheuristics evaluation. Accordingly, we propose and discuss some principles inspired by the experimental practice in machine learning for guiding the performance evaluation of optimization algorithms. Among these principles, a clear separation between the instances that are used for tuning algorithms and those that are used in the actual evaluation is particularly important for a proper assessment.

[1]  Thomas Stützle,et al.  Ant Colony Optimization Theory , 2004 .

[2]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[3]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[4]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[5]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[6]  Ian Sommerville,et al.  Software Engineering, 6. Auflage , 2001 .

[7]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[8]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[9]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[10]  Marc Toussaint May Self-adaptive exploration in evolutionary search , 2001 .

[11]  Andrew W. Moore,et al.  Hoeffding Races: Accelerating Model Selection Search for Classification and Function Approximation , 1993, NIPS.

[12]  Vangelis Th. Paschos,et al.  Differential Approximation Algorithms for Some Combinatorial Optimization Problems , 1998, Theor. Comput. Sci..

[13]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[14]  Mauro Birattari,et al.  Model-Based Search for Combinatorial Optimization: A Critical Survey , 2004, Ann. Oper. Res..

[15]  Simon Hayes,et al.  Act 4 , 1998, Romeo and Juliet.

[16]  Reha Uzsoy,et al.  Experimental Evaluation of Heuristic Optimization Algorithms: A Tutorial , 2001, J. Heuristics.

[17]  Julie L. Swann,et al.  Simple Procedures for Selecting the Best Simulated System When the Number of Alternatives is Large , 2001, Oper. Res..

[18]  Samir Khuller,et al.  z-Approximations , 2001, J. Algorithms.

[19]  A. E. Eiben,et al.  A critical note on experimental research methodology in EC , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[20]  Eitan Zemel Measuring the Quality of Approximate Solutions to Zero-One Programming Problems , 1981, Math. Oper. Res..

[21]  David S. Johnson,et al.  A theoretician's guide to the experimental analysis of algorithms , 1999, Data Structures, Near Neighbor Searches, and Methodology.

[22]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[23]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[24]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[25]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[26]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[27]  Mauro Birattari The Problem of Tuning Metaheuristics , 2005 .

[28]  John N. Hooker,et al.  Testing heuristics: We have it all wrong , 1995, J. Heuristics.

[29]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[30]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[31]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[32]  Andrew W. Moore,et al.  Efficient Algorithms for Minimizing Cross Validation Error , 1994, ICML.

[33]  Catherine C. McGeoch Feature Article - Toward an Experimental Method for Algorithm Simulation , 1996, INFORMS J. Comput..

[34]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[35]  Marco Dorigo,et al.  Model-Based Search for Combinatorial Optimization: A Comparative Study , 2002, PPSN.

[36]  Xin Yao,et al.  Adapting Self-Adaptive Parameters in Evolutionary Algorithms , 2001, Applied Intelligence.

[37]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[38]  Mauricio G. C. Resende,et al.  Designing and reporting on computational experiments with heuristic methods , 1995, J. Heuristics.

[39]  Mauro Birattari,et al.  The problem of tuning metaheuristics: as seen from the machine learning perspective , 2004 .

[40]  李幼升,et al.  Ph , 1989 .

[41]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[42]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[43]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER IN EVOLUTION: SELF-ORGANIZATION AND SELECTION , 1992 .

[44]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[45]  Marco Dorigo,et al.  Ant colony optimization theory: A survey , 2005, Theor. Comput. Sci..