Late Eocene impact ejecta in Italy: Attempts to constrain the impactor composition from isotopic analyses of spinel-rich samples

[1]  M. Rosing,et al.  Uniform 182W isotope compositions in Eoarchean rocks from the Isua region, SW Greenland: The role of early silicate differentiation and missing late veneer , 2019, Geochimica et Cosmochimica Acta.

[2]  F. Moynier,et al.  Chromium isotopic homogeneity between the Moon, the Earth, and enstatite chondrites , 2017, 1712.02627.

[3]  B. Schmitz,et al.  Late Eocene 3He and Ir anomalies associated with ordinary chondritic spinels , 2017 .

[4]  C. Koeberl,et al.  Chromium isotope evidence in ejecta deposits for the nature of Paleoproterozoic impactors , 2016, 1612.06922.

[5]  M. Schönbächler,et al.  High-precision measurement of W isotopes in Fe–Ni alloy and the effects from the nuclear field shift , 2016 .

[6]  M. Moreira,et al.  Estimation of the extraterrestrial 3 He and 20 Ne fluxes on Earth from He and Ne systematics in marine sediments , 2016 .

[7]  M. Becker,et al.  Formation timescales of CV chondrites from component specific Hf-W systematics , 2015 .

[8]  B. Schmitz,et al.  Fragments of Late Eocene Earth-impacting asteroids linked to disturbance of asteroid belt , 2015 .

[9]  H. Becker,et al.  Alpha-decay of 184Os revealed by radiogenic 180W in meteorites: Half life determination and viability as geochronometer , 2014 .

[10]  S. Peters,et al.  p-Process 180W anomalies in iron meteorites: Nucleosynthetic versus non-nucleosynthetic origins , 2013 .

[11]  R. Wieler,et al.  Hf–W chronometry of core formation in planetesimals inferred from weakly irradiated iron meteorites , 2012 .

[12]  G. Lugmair,et al.  Chromium-isotopes in Late Eocene impact spherules indicate a likely asteroid belt provenance , 2011 .

[13]  C. Koeberl,et al.  A tungsten isotope approach to search for meteoritic components in terrestrial impact rocks , 2009 .

[14]  A. Montanari,et al.  Evidence for a change in Milankovitch forcing caused by extraterrestrial events at Massignano, Italy, Eocene-Oligocene boundary GSSP , 2009 .

[15]  C. Koeberl Late Eocene impact craters and impactoclastic layers—An overview , 2009 .

[16]  B. Schmitz,et al.  A search for extraterrestrial chromite in the late Eocene Massignano section, central Italy , 2009 .

[17]  K. Farley Late Eocene and late Miocene cosmic dust events: Comet showers, asteroid collisions, or lunar impacts? , 2009 .

[18]  J. Birck,et al.  High-precision analysis of chromium isotopes in terrestrial and meteorite samples by thermal ionization mass spectrometry , 2008 .

[19]  É. Robin,et al.  Osmium, tungsten, and chromium isotopes in sediments and in Ni‐rich spinel at the K‐T boundary: Signature of a chondritic impactor , 2007 .

[20]  J. Birck,et al.  Widespread 54Cr Heterogeneity in the Inner Solar System , 2007 .

[21]  T. Kleine,et al.  Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites, and iron meteorites , 2005 .

[22]  P. Claeys,et al.  An ordinary chondrite impactor for the Popigai crater, Siberia , 2005 .

[23]  M. Bichler,et al.  New half-life measurement of 182Hf: improved chronometer for the early solar system. , 2004, Physical review letters.

[24]  P. Claeys,et al.  Comet or Asteroid Shower in the Late Eocene? , 2004, Science.

[25]  A. Montanari,et al.  Delayed climate cooling in the Late Eocene caused by multiple impacts: high-resolution geochemical studies at Massignano, Italy , 2004 .

[26]  T. Kleine,et al.  182Hf-182W isotope systematics of chondrites, eucrites, and martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars , 2004 .

[27]  A. Montanari,et al.  Global cooling accelerated by early late Eocene impacts , 2000 .

[28]  E. Shoemaker,et al.  Geochemical evidence for a comet shower in the late Eocene. , 1998, Science.

[29]  A. Montanari,et al.  Extraterrestrial Ni-rich spinel in upper Eocene sediments from Massignano, Italy , 1998 .

[30]  A. Montanari,et al.  Shocked quartz from the late Eocene: Impact evidence from Massignano, Italy , 1996 .

[31]  S. Taylor,et al.  The geochemical evolution of the continental crust , 1995 .

[32]  A. Montanari,et al.  Iridium Anomalies of Late Eocene Age at Massignano (Italy), and ODP Site 689B (Maud Rise, Antarctic) , 1993 .

[33]  I. P. Silva,et al.  Decision on the Eocene-Oligocene boundary stratotype , 1993 .

[34]  J. S. Gilmore,et al.  LATE EOCENE IMPACT MICROSPHERULES: STRATIGRAPHY, AGE AND GEOCHEMISTRY , 1987 .

[35]  B. Glass Positive Ir anomaly at 6.19 m, Massignano, Italy: Most likely not from the Chesapeake Bay impact , 2019, 250 Million Years of Earth History in Central Italy: Celebrating 25 Years of the Geological Observatory of Coldigioco.

[36]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[37]  R. Wieler,et al.  Neutron capture on Pt isotopes in iron meteorites and the Hf–W chronology of core formation in planetesimals , 2013 .

[38]  B. Peucker‐Ehrenbrink,et al.  A comparison of the osmium and chromium isotopic methods for the detection of meteoritic components in impactites: Examples from the Morokweng and Vredefort Impact Structures, South Africa , 2002 .

[39]  K. Heumann,et al.  Tungsten isotope ratio determination by negative thermal ionization mass spectrometry , 1991 .