Mesh Shape and Anisotropic Elements: Theory and Practice
暂无分享,去创建一个
[1] A. Bossavit. A rationale for 'edge-elements' in 3-D fields computations , 1988 .
[2] M. Krízek,et al. On the maximum angle condition for linear tetrahedral elements , 1992 .
[3] Kunibert G. Siebert,et al. An a posteriori error estimator for anisotropic refinement , 1996 .
[4] Thomas Apel,et al. Comparison of several mesh refinement strategies near edges , 1996 .
[5] Igor Tsukerman,et al. A general accuracy criterion for finite element approximation , 1998 .
[6] Igor Tsukerman. Approximation of conservative fields and the element 'edge shape matrix' , 1998 .
[7] Martin Berzins. A Solution-Based Triangular and Tetrahedral Mesh Quality Indicator , 1998, SIAM J. Sci. Comput..
[8] S. Nicaise,et al. The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges , 1998 .
[9] Christoph Pflaum,et al. On a posteriori error estimators in the infinite element method on anisotropic meshes. , 1999 .
[10] T. Apel. Anisotropic Finite Elements: Local Estimates and Applications , 1999 .
[11] Gerd Kunert,et al. An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes , 2000, Numerische Mathematik.
[12] Gerd Kunert,et al. Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes , 2000, Numerische Mathematik.
[13] Thomas Apel,et al. Anisotropic interpolation with applications to the finite element method , 1991, Computing.