Metadata-supported automated ecological modelling

Ecological models should be rooted in data derived from observation, allowing methodical model construction and clear accounts of model results with respect to the data. Unfortunately, many models are retrospectively fitted to data because in practice it is difficult to bridge the gap between concrete data and abstract models. Our research is on automated methods to support bridging this gap. The approach proposed consists of raising the data level of abstraction via an ecological metadata ontology and from that, through logic-based knowledge representation and inference, automatically to generate prototypical partial models to be further improved by the modeller.

[1]  Ingo Br,et al.  Prolog programming for artificial intelligence , 1990 .

[2]  J. Cohen,et al.  Modeling Biological Systems. Principles and Applications , 1997 .

[3]  David J. Hand Intelligent Data Analysis: Issues and Opportunities , 1998, Intell. Data Anal..

[4]  Paul R. Cohen,et al.  Does Prior Knowledge Facilitate the Development of Knowledge-based Systems? , 1999, AAAI/IAAI.

[5]  Jaime G. Carbonell,et al.  An Overview of Machine Learning , 1983 .

[6]  Alan Bundy,et al.  An Intelligent Front End for Ecological Modelling , 1984, ECAI.

[7]  Ljup Co Todorovski Declarative Bias in Equation Discovery , 1997 .

[8]  Alan Bundy,et al.  The use of prolog for improving the rigour and accessibility of ecological modelling , 1989 .

[9]  A. Ford Modeling the Environment: An Introduction To System Dynamics Modeling Of Environmental Systems , 1999 .

[10]  J. Benz,et al.  Call for a common model documentation etiquette , 1997 .

[11]  Virgínia V. B. Biris Brilhante,et al.  Using Formal Meta-Data Descriptions for Automated Ecological Modeling , 1999, AAAI/IAAI.

[12]  Michael Uschold,et al.  Ontologies: principles, methods and applications , 1996, The Knowledge Engineering Review.

[13]  Adelinde M. Uhrmacher,et al.  Reasoning about changing structure: a modeling concept for ecological systems , 1995, Appl. Artif. Intell..

[14]  R. Freckleton,et al.  The Ecological Detective: Confronting Models with Data , 1999 .

[15]  Peter Freeman,et al.  Application of artificial intelligence , 1988, SOEN.

[16]  William E. Grant,et al.  Ecology and Natural Resource Management: Systems Analysis and Simulation , 1997 .

[17]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[18]  Richard Fikes,et al.  The Ontolingua Server: a tool for collaborative ontology construction , 1997, Int. J. Hum. Comput. Stud..

[19]  Verónica Dahl,et al.  Logic Grammars , 1989, Symbolic Computation.

[20]  Sašo Džeroski,et al.  Using machine learning techniques in the construction of models. II. Data analysis with rule induction , 1997 .

[21]  Bruce W. Porter,et al.  Automated Modeling of Complex Systems to Answer Prediction Questions , 1997, Artif. Intell..

[22]  Ivan Bratko,et al.  Using machine learning techniques in the construction of models I. Introduction , 1994 .

[23]  Leon Sterling,et al.  The Art of Prolog - Advanced Programming Techniques , 1986 .

[24]  R. Hoch,et al.  Towards a standard for documentation of mathematical models in ecology , 1998 .

[25]  Fernando Pereira,et al.  Definite clause grammars for language analysis , 1986 .

[26]  William E. Mann The languages of logic , 1979 .

[27]  N. Smith,et al.  Automated modelling: a discussion and review , 1996, The Knowledge Engineering Review.

[28]  Saso Dzeroski,et al.  Discovering Dynamics , 1993, ICML.

[29]  Ivan Bratko,et al.  Equation discovery with ecological applications , 1999 .