Testing MCMC algorithms with randomly generated Bayesian networks
暂无分享,去创建一个
[1] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[2] Ross D. Shachter,et al. Simulation Approaches to General Probabilistic Inference on Belief Networks , 2013, UAI.
[3] A. Shapiro. Monte Carlo Sampling Methods , 2003 .
[4] Fabio Gagliardi Cozman,et al. Embedded Bayesian Networks: Anyspace, Anytime Probabilistic Inference , 2002 .
[5] Jian Cheng,et al. Computational Investigation of Low-Discrepancy Sequences in Simulation Algorithms for Bayesian Networks , 2000, UAI.
[6] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[7] Walter R. Gilks,et al. A Language and Program for Complex Bayesian Modelling , 1994 .
[8] Enrique F. Castillo,et al. Expert Systems and Probabilistic Network Models , 1996, Monographs in Computer Science.
[9] J. Wendelberger. Adventures in Stochastic Processes , 1993 .
[10] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[11] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[12] Takuji Nishimura,et al. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.
[13] J. E. H. Shaw,et al. A Quasirandom Approach to Integration in Bayesian Statistics , 1988 .
[14] J. Liao,et al. Variance Reduction in Gibbs Sampler Using Quasi Random Numbers , 1998 .
[15] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[16] Melantjong. Random Generation Of Dags For Graph Drawing , 2000 .
[17] Arnold J. Stromberg,et al. Number-theoretic Methods in Statistics , 1996 .
[18] Gregory F. Cooper,et al. NESTOR: A Computer-Based Medical Diagnostic Aid That Integrates Causal and Probabilistic Knowledge. , 1984 .
[19] A. Hasman,et al. Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .
[20] Michael I. Jordan,et al. Variational probabilistic inference and the QMR-DT database , 1998 .
[21] G. Casella,et al. Explaining the Gibbs Sampler , 1992 .
[22] I. A. Antonov,et al. An economic method of computing LPτ-sequences , 1979 .
[23] Bennett L. Fox,et al. Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators , 1986, TOMS.
[24] Max Henrion,et al. Propagating uncertainty in bayesian networks by probabilistic logic sampling , 1986, UAI.
[25] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[26] G. Melançon,et al. Random generation of dags for graph drawing , 2000 .
[27] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[28] Tristan Miller,et al. A Well-behaved Algorithm for Simulating Dependence Structures of Bayesian Networks , 1999 .
[29] Paul Bratley,et al. Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.
[30] Eric Horvitz,et al. Bounded Conditioning: Flexible Inference for Decisions under Scarce Resources , 2013, UAI 1989.
[31] Gregory F. Cooper,et al. The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..
[32] Fabio Gagliardi Cozman,et al. Random Generation of Bayesian Networks , 2002, SBIA.