Simplicial Multivalued Maps and the Witness Complex for Dynamical Analysis of Time Series

Topology based analysis of time-series data from dynamical systems is powerful: it potentially allows for computer-based proofs of the existence of various classes of regular and chaotic invariant sets for high-dimensional dynamics. Standard methods are based on a cubical discretization of the dynamics and use the time series to construct an outer approximation of the underlying dynamical system. The resulting multivalued map can be used to compute the Conley index of isolated invariant sets of cubes. In this paper we introduce a discretization that uses instead a simplicial complex constructed from a witness-landmark relationship. The goal is to obtain a natural discretization that is more tightly connected with the invariant density of the time series itself. The time-ordering of the data also directly leads to a map on this simplicial complex that we call the witness map. We obtain conditions under which this witness map gives an outer approximation of the dynamics, and thus can be used to compute the Conley index of isolated invariant sets. The method is illustrated by a simple example using data from the classical H\'enon map.

[1]  Herbert Edelsbrunner,et al.  An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere , 1995, Comput. Aided Geom. Des..

[2]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[3]  Konstantin Mischaikow,et al.  A Rigorous Numerical Method for the Global Analysis of Infinite-Dimensional Discrete Dynamical Systems , 2004, SIAM J. Appl. Dyn. Syst..

[4]  Konstantin Mischaikow,et al.  An Algorithmic Approach to Chain Recurrence , 2005, Found. Comput. Math..

[5]  Vin de Silva,et al.  A weak characterisation of the Delaunay triangulation , 2008 .

[6]  F. Takens Detecting strange attractors in turbulence , 1981 .

[7]  Anthony W. Baker Lower bounds on entropy via the Conley index with application to time series , 2002 .

[8]  坂上 貴之 書評 Computational Homology , 2005 .

[9]  K. Mischaikow,et al.  Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.

[10]  Predrag Cvitanović A Two-dimensional Mapping with a Strange Attractor , 2017 .

[11]  Herbert Edelsbrunner,et al.  The union of balls and its dual shape , 1993, SCG '93.

[12]  Robert W. Easton,et al.  Geometric methods for discrete dynamical systems , 1998 .

[13]  Joshua D. Reiss,et al.  Construction of symbolic dynamics from experimental time series , 1999 .

[14]  Rafael M. Frongillo,et al.  Algorithms for Rigorous Entropy Bounds and Symbolic Dynamics , 2008, SIAM J. Appl. Dyn. Syst..

[15]  André Well Sur les théorèmes de de Rham , 1952 .

[16]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[17]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[18]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[19]  Loring W. Tu,et al.  Differential forms in algebraic topology , 1982, Graduate texts in mathematics.

[20]  Konstantin Mischaikow,et al.  A Database Schema for the Analysis of Global Dynamics of Multiparameter Systems , 2009, SIAM J. Appl. Dyn. Syst..

[21]  David Richeson,et al.  Shift Equivalence and the Conley Index , 1999, math/9910171.

[22]  E. Kostelich,et al.  Characterization of an experimental strange attractor by periodic orbits. , 1989, Physical review. A, General physics.

[23]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[24]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[25]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[26]  Marian Mrozek,et al.  An Algorithmic Approach to the Conley Index Theory , 1999 .

[27]  R. Ho Algebraic Topology , 2022 .

[28]  Instytut InformatiykiUniwersytet Jagiello From Time Series to Symbolic Dynamics: an Algebraic Topological Approach , 1997 .

[29]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[30]  Konstantin Mischaikow,et al.  Conley index theory , 1995 .

[31]  Afra Zomorodian,et al.  Fast construction of the Vietoris-Rips complex , 2010, Comput. Graph..

[32]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[33]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[34]  K. Borsuk On the imbedding of systems of compacta in simplicial complexes , 1948 .

[35]  Gunnar E. Carlsson,et al.  Topological estimation using witness complexes , 2004, PBG.

[36]  C. H. Dowker HOMOLOGY GROUPS OF RELATIONS , 1952 .

[37]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .