The case for a modern multiwavelength, polarization-sensitive LIDAR in orbit around Mars

Abstract We present the scientific case to build a multiple-wavelength, active, near-infrared (NIR) instrument to measure the reflected intensity and polarization characteristics of backscattered radiation from planetary surfaces and atmospheres. We focus on the ability of such an instrument to enhance, potentially revolutionize, our understanding of climate, volatiles and astrobiological potential of modern-day Mars. Such an instrument will address the following three major science themes, which we address in this paper: Science Theme 1. Surface . This would include global, night and day mapping of H 2 O and CO 2 surface ice properties. Science Theme 2. Ice Clouds . This would including unambiguous discrimination and seasonal mapping of CO 2 and H 2 O ice clouds. Science Theme 3. Dust Aerosols . This theme would include multiwavelength polarization measurements to infer dust grain shapes and size distributions.

[1]  R. Pierrehumbert,et al.  On the Scattering Greenhouse Effect of CO2 Ice Clouds , 1998 .

[2]  Adrian J. Brown,et al.  The MARTE VNIR imaging spectrometer experiment: design and analysis. , 2008, Astrobiology.

[3]  Bernard Schmitt,et al.  The temperature‐dependent near‐infrared absorption spectrum of hexagonal H2O ice , 1998 .

[4]  M. Zuber,et al.  Mars Atmospheric CO2 Condensation Above the North and South Poles as Revealed by Radio Occultation, Climate Sounder, and Laser Ranging Observations , 2012 .

[5]  Mark T. Lemmon,et al.  Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini‐TES , 2006 .

[6]  Scott L. Murchie,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) north polar springtime recession mapping: First 3 Mars years of observations , 2012 .

[7]  A. Ingersoll,et al.  Martian Clouds Observed by Mars Global Surveyor Mars Orbiter Camera from Ls 135 to 310 , 2002 .

[8]  David E. Smith,et al.  The global topography of Mars and implications for surface evolution. , 1999, Science.

[9]  A. Colaprete,et al.  The Radiative Effects of Martian Water Ice Clouds on the Local Atmospheric Temperature Profile , 2000 .

[10]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[11]  Robert M. Haberle,et al.  Modeling the Martian seasonal water cycle , 1997 .

[12]  Mark T. Lemmon,et al.  Phoenix LIDAR measurements of Mars atmospheric dust , 2013 .

[13]  P. Gierasch,et al.  The vertical structure of limb hazes in the Martian atmosphere , 1986 .

[14]  M. M. Osterloo,et al.  Chloride-Bearing Materials in the Southern Highlands of Mars , 2008, Science.

[15]  Graeme L. Stephens,et al.  A global survey of the instantaneous linkages between cloud vertical structure and large‐scale climate , 2014 .

[16]  Gérard Mégie,et al.  Laser Remote Sensing: Fundamentals and Applications , 1985 .

[17]  T. Titus Thermal infrared and visual observations of a water ice lag in the Mars southern summer , 2005 .

[18]  Michael D. Smith,et al.  Mars Global Surveyor Thermal Emission Spectrometer (TES) observations of variations in atmospheric dust optical depth over cold surfaces , 2009 .

[19]  Michael D. Smith Spacecraft Observations of the Martian Atmosphere , 2008 .

[20]  P. Christensen,et al.  Exposed Water Ice Discovered near the South Pole of Mars , 2002, Science.

[21]  A. Ingersoll,et al.  Cold Spots in the Martian Polar Regions: Evidence of Carbon Dioxide Depletion? , 2000 .

[22]  E. F. Barker,et al.  The Infrared Absorption Spectrum of Carbon Dioxide , 1932 .

[23]  A. Brown,et al.  Equivalence relations and symmetries for laboratory, LIDAR, and planetary Müeller matrix scattering geometries. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  E. Eloranta,et al.  The 27-28 October 1986 FIRE IFO cirrus case study : cloud optical properties determined by high spectral resolution lidar , 1990 .

[25]  J. Hovenier,et al.  Depolarization of light backscattered by randomly oriented nonspherical particles. , 1995, Optics letters.

[26]  David E. Smith,et al.  Two Mars years of clouds detected by the Mars Orbiter Laser Altimeter , 2003 .

[27]  R. Kahn,et al.  The spatial and seasonal distribution of Martian clouds and some meteorological implications , 1984 .

[28]  E. Browell,et al.  An analysis of lidar observations of polar stratospheric clouds , 1990 .

[29]  Thomas A. Germer,et al.  Remote Sensing of Chiral Signatures on Mars , 2012, 1209.0671.

[30]  M. Felton,et al.  Classification of Polar Stratospheric Clouds Using LIDAR Measurements From the SAGE III Ozone Loss and Validation Experiment , 2007 .

[31]  Jean-Pierre Bibring,et al.  No signature of clear CO2 ice from the ‘cryptic’ regions in Mars' south seasonal polar cap , 2006, Nature.

[32]  H. Kieffer H2O grain size and the amount of dust in Mars' Residual north polar cap , 1990 .

[33]  Peter G. Ford,et al.  Winter clouds over the North Martian Polar Cap , 2000 .

[34]  J. Schofield,et al.  Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity , 2009 .

[35]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[36]  S. Calcutt,et al.  Differentiability and retrievability of CO2 and H2O clouds on Mars from MRO/MCS measurements: A radiative-transfer study , 2014 .

[37]  J. Pollack,et al.  Thermal infrared observations of the condensing Martian polar caps: CO2 ice temperatures and radiative budget , 1996 .

[38]  M. J. Wolff,et al.  Atmospheric Modeling of the Martian Polar Regions: One Mars Year of CRISM EPF Observations of the South Pole , 2009 .

[39]  M. Mishchenko,et al.  Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight , 1997 .

[40]  Pascal Rannou,et al.  Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model , 2004 .

[41]  P. Gierasch,et al.  A study of the thermal and dynamical structure of the martian lower atmosphere , 1968 .

[42]  Hugh H. Kieffer,et al.  TES mapping of Mars' north seasonal cap , 2001 .

[43]  Xiaomei Lu,et al.  Two-wavelength lidar inversion algorithm for determination of aerosol extinction-to-backscatter ratio and its application to CALIPSO lidar measurements , 2011 .

[44]  Adrian J. Brown,et al.  Transient bright "halos" on the South Polar Residual Cap of Mars: Implications for mass-balance , 2014 .

[45]  D. Paige,et al.  The role of snowfall in forming the seasonal ice caps of Mars: Models and constraints from the Mars Climate Sounder , 2014 .

[46]  S. Douté,et al.  Observations of the south seasonal cap of Mars during recession in 2004–2006 by the OMEGA visible/near‐infrared imaging spectrometer on board Mars Express , 2007 .

[47]  J. Schofield,et al.  Carbon dioxide snow clouds on Mars: South polar winter observations by the Mars Climate Sounder , 2012 .

[48]  J. S. Barton,et al.  Carbon dioxide crystals: An examination of their size, shape, and scattering properties at 37 GHz and comparisons with water ice (snow) measurements , 1998 .

[49]  Aymeric Spiga,et al.  Elements of comparison between Martian and terrestrial mesoscale meteorological phenomena: Katabatic winds and boundary layer convection , 2011 .

[50]  Gary G. Gibson,et al.  Discriminating between spherical and non-spherical scatterers with lidar using circular polarization: a theoretical study , 2003 .

[51]  On the effects of size factor on albedo versus wavelength for light scattered by small particles under Mie and Rayleigh regimes , 2013, 1307.5096.

[52]  K. Stamnes,et al.  CALIPSO/CALIOP Cloud Phase Discrimination Algorithm , 2009 .

[53]  A. Brown Equivalence relations for Mueller matrix symmetries of laboratory, LIDAR and planetary scattering geometries , 2014, 1409.5835.

[54]  F. Daerden,et al.  Mars Water-Ice Clouds and Precipitation , 2009, Science.

[55]  Stephen R. Lewis,et al.  THE MARTIAN ATMOSPHERIC BOUNDARY LAYER , 2011 .

[56]  D. Fussen,et al.  Subvisible CO2 ice clouds detected in the mesosphere of Mars , 2006 .

[57]  R. Haberle,et al.  CO2 clouds, CAPE and convection on Mars: Observations and general circulation modeling , 2005 .

[58]  F. Daerden,et al.  Observations of near‐surface fog at the Phoenix Mars landing site , 2011 .

[59]  Adrian J. Brown,et al.  Symmetry relations revealed in Mueller matrix hemispherical maps , 2012 .

[60]  Gabriele Arnold,et al.  A Model of Spectral Albedo of Particulate Surfaces: Implications for Optical Properties of the Moon , 1999 .

[61]  T. Sharp,et al.  Deriving chemical trends from thermal infrared spectra of weathered basalt: Implications for remotely determining chemical trends on Mars , 2013 .

[62]  C. Hansen,et al.  Polygonal cracks in the seasonal semi-translucent CO2 ice layer in Martian polar areas , 2012 .

[63]  K. Herr,et al.  Evidence for Solid Carbon Dioxide in the Upper Atmosphere of Mars , 1970, Science.

[64]  J. Kasting,et al.  Influence of carbon dioxide clouds on early martian climate. , 2000, Icarus.

[65]  R R Alfano,et al.  Circular polarization memory of light. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  A. Brown Spectral bluing induced by small particles under the Mie and Rayleigh regimes , 2014 .

[67]  S. Pal,et al.  Multiple scattering in atmospheric clouds: lidar observations. , 1976, Applied optics.

[68]  T. Titus,et al.  Spatial and temporal distributions of Martian north polar cold spots before, during, and after the global dust storm of 2001 , 2009 .

[69]  K. Herr,et al.  Infrared Absorptions near Three Microns Recorded over the Polar Cap of Mars , 1969, Science.

[70]  Carl Weimer,et al.  Commissioning of the CALIPSO payload , 2007, SPIE Defense + Commercial Sensing.

[71]  Tom Ayers,et al.  Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor. , 2004, Applied optics.

[72]  G. Hansen The infrared absorption spectrum of carbon dioxide ice from 1.8 to 333 μm , 1997 .

[73]  Q. Fu,et al.  For the depolarization of linearly polarized light by smoke particles , 2013 .

[74]  Philip R. Christensen,et al.  North and south subice gas flow and venting of the seasonal caps of Mars: A major geomorphological agent , 2008 .

[75]  S. Dunagan,et al.  The MARTE VNIR imaging spectrometer experiment: design and analysis. , 2008, Astrobiology.

[76]  S. Douté,et al.  Winter and spring evolution of northern seasonal deposits on Mars from OMEGA on Mars Express , 2011 .

[77]  Robert M. Haberle,et al.  Sublimation and transport of water from the north residual polar cap on Mars , 1990 .

[78]  Patrick C. McGuire,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) south polar mapping: First Mars year of observations , 2010 .

[79]  Adrian J. Brown Spectral curve fitting for automatic hyperspectral data analysis , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[80]  Scot Rafkin,et al.  The potential importance of non-local, deep transport on the energetics, momentum, chemistry, and aerosol distributions in the atmospheres of Earth, Mars, and Titan , 2010, 1010.5202.

[81]  Robert M. Haberle,et al.  Formation of convective carbon dioxide clouds near the south pole of Mars , 2002 .

[82]  Bruce A. Cantor,et al.  Ultraviolet dust aerosol properties as observed by MARCI , 2010 .

[83]  A. Rücker A summary of the results of the recent magnetic survey of Great Britain and Ireland conducted by professors Rücker and Thorpe: Part II. On the accuracy of the determination of the local disturbing magnetic forces , 1896 .

[84]  S. Burk Diurnal Winds Near the Martian Polar Caps , 1976 .

[85]  P. Drossart,et al.  Analysis of CO2 non-LTE emissions at 4.3μm in the Martian atmosphere as observed by PFS/Mars Express and SWS/ISO , 2005 .

[86]  Bryan A. Baum,et al.  Sensitivity of depolarized lidar signals to cloud and aerosol particle properties , 2006 .

[87]  R. Haberle,et al.  Sensitivity of Martian Southern polar cap edge winds and surface stresses to dust optical thickness and to the large-scale sublimation flow , 1997 .

[88]  D. Muhleman,et al.  Cloud Reflection Observations: Results from the Mars Orbiter Laser Altimeter , 2001 .

[89]  J. Pollack,et al.  Low brightness temperatures of Martian polar caps : CO2 clouds or low surface emissivity ? , 1995 .

[90]  J. Hovenier,et al.  The adding method for multiple scattering calculations of polarized light , 1987 .

[91]  J. Bell,et al.  High-resolution atmospheric observations by the Mars Odyssey Thermal Emission Imaging System , 2007 .

[92]  Wei Gong,et al.  New dust aerosol identification method for spaceborne lidar measurements , 2011 .

[93]  A. Spiga,et al.  Modeling the microphysics of CO2 ice clouds within wave-induced cold pockets in the martian mesosphere , 2014 .

[94]  M. Hayman,et al.  Polarization lidar observations of backscatter phase matrices from oriented ice crystals and rain. , 2014, Optics express.

[95]  L. I. Chaikovskaya,et al.  Remote sensing of clouds using linearly and circularly polarized laser beams: techniques to compute signal polarization , 2008 .

[96]  Beidou Zhang,et al.  Comparisons of PBL heights derived from CALIPSO and ECMWF reanalysis data over China , 2015 .

[97]  J. Bell,et al.  Distribution of hydrated minerals in the north polar region of Mars , 2009 .

[98]  I. Riipinen,et al.  Near‐pure vapor condensation in the Martian atmosphere: CO2 ice crystal growth , 2013 .

[99]  Jacqueline Lenoble,et al.  A MODEL FOR THE BIDIRECTIONAL POLARIZED REFLECTANCE OF SNOW , 1999 .

[100]  A. Määttänen,et al.  Carbon dioxide-water clusters in the atmosphere of Mars , 2011 .

[101]  C. Walther,et al.  Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory. , 2001, Applied optics.

[102]  Hugh H. Kieffer,et al.  CO2 jets formed by sublimation beneath translucent slab ice in Mars' seasonal south polar ice cap , 2006, Nature.

[103]  Livio L. Tornabene,et al.  Louth crater: Evolution of a layered water ice mound , 2008 .

[104]  K. Sassen The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment , 1991 .

[105]  F Forget,et al.  Warming early Mars with carbon dioxide clouds that scatter infrared radiation. , 1997, Science.

[106]  D. Ming,et al.  H2O at the Phoenix Landing Site , 2009, Science.

[107]  A. Colaprete,et al.  Significant vertical water transport by mountain‐induced circulations on Mars , 2006 .

[108]  H. Kieffer,et al.  TES premapping data: Slab ice and snow flurries in the Martian north polar night , 2001 .

[109]  Zhongqiu Sun,et al.  The effects of grain size on bidirectional polarized reflectance factor measurements of snow , 2011 .

[110]  J. Schofield,et al.  Mars' south polar hood as observed by the Mars Climate Sounder , 2010 .

[111]  Zhu,et al.  Polarization memory of multiply scattered light. , 1989, Physical review. B, Condensed matter.

[112]  Bruce A. Cantor,et al.  MARCI and MOC observations of the atmosphere and surface cap in the north polar region of Mars , 2010 .