TABLEAU ATOMS AND A NEW MACDONALD POSITIVITY
暂无分享,去创建一个
A. Lascoux | A. LASCOUX | J. MORSE | J. Morse
[1] Naihuan Jing,et al. Vertex operators and Hall-Littlewood symmetric functions , 1991 .
[2] Jerzy Weyman,et al. Graded Characters of Modules Supported in the Closure of a Nilpotent Conjugacy Class , 2000, Eur. J. Comb..
[3] C. Schensted. Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.
[4] W. Fulton. Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .
[5] Donald E. Knuth,et al. PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .
[6] Mike Zabrocki,et al. A Macdonald Vertex Operator and Standard Tableaux Statistics , 1998, Electron. J. Comb..
[7] Mark Shimozono. Multi-atoms and Monotonicity of Generalized Kostka Polynomials , 2001, Eur. J. Comb..
[8] L. Lapointe,et al. Tableaux statistics for two part Macdonald polynomials , 1998 .
[9] Mark Shimozono. A Cyclage Poset Structure for Littlewood-Richardson Tableaux , 2001, Eur. J. Comb..
[10] A. Garsia,et al. On certain graded Sn-modules and the q-Kostka polynomials , 1992 .
[11] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[12] Mike Zabrocki,et al. Hall–Littlewood Vertex Operators and Generalized Kostka Polynomials☆ , 2000 .
[13] Carol Bult,et al. PERMUTATIONS , 1994 .
[14] Alain Lascoux,et al. Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties , 1995 .
[15] Mark Haiman,et al. Hilbert schemes, polygraphs and the Macdonald positivity conjecture , 2000, math/0010246.
[16] A. Garsia,et al. A graded representation model for Macdonald's polynomials. , 1993, Proceedings of the National Academy of Sciences of the United States of America.
[17] Anne Schilling,et al. Inhomogeneous Lattice Paths, Generalized Kostka Polynomials and An−1 Supernomials , 1998, math/9802111.
[18] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.