Gap-free computation of Pareto-points by quadratic scalarizations

In multicriteria optimization, several objective functions have to be minimized simultaneously. For this kind of problem, approximations to the whole solution set are of particular importance to decision makers. Usually, approximating this set involves solving a family of parameterized optimization problems. It is the aim of this paper to argue in favour of parameterized quadratic objective functions, in contrast to the standard weighting approach in which parameterized linear objective functions are used. These arguments will rest on the favourable numerical properties of these quadratic scalarizations, which will be investigated in detail. Moreover, it will be shown which parameter sets can be used to recover all solutions of an original multiobjective problem where the ordering in the image space is induced by an arbitrary convex cone.

[1]  Johannes Jahn,et al.  A Bicriterial Optimization Problem of Antenna Design , 1997, Comput. Optim. Appl..

[2]  Alicia Sterna-Karwat,et al.  Lipschitz and differentiable dependence of solutions on a parameter in a scalarization method , 1987, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[3]  Jörg Fliege,et al.  Generalized Goal Programming: polynomial methods and applications , 2002, Math. Program..

[4]  J. Jahn Mathematical vector optimization in partially ordered linear spaces , 1986 .

[5]  Michael O. Ball,et al.  Bicriteria Product Design Optimization , 2001 .

[6]  B. Roy Méthodologie multicritère d'aide à la décision , 1985 .

[7]  D. White Optimality and efficiency , 1982 .

[8]  Miroslav D. Lutovac,et al.  Joint optimization of multiple behavioral and implementation properties of digital IIR filter designs , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[9]  Ralph E. Steuer Multiple criteria optimization , 1986 .

[10]  Johannes Jahn Parametric approximation problems arising in vector optimization , 1987 .

[11]  Prabuddha De,et al.  On the Minimization of Completion Time Variance with a Bicriteria Extension , 1992, Oper. Res..

[12]  D. Blackwell,et al.  5. Admissible Points of Convex Sets , 1953 .

[13]  Justo Puerto,et al.  Planar point-objective location problems with nonconvex constraints: A geometrical construction , 1995, J. Glob. Optim..

[14]  H. P. Benson,et al.  Towards finding global representations of the efficient set in multiple objective mathematical programming , 1997 .

[15]  R. Durier,et al.  Weighting factor results in vector optimization , 1988 .

[16]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[17]  D. J. White,et al.  Epsilon-dominating solutions in mean-variance portfolio analysis , 1998, Eur. J. Oper. Res..

[18]  J. Fliege,et al.  Constructing approximations to the efficient set of convex quadratic multiobjective problems , 2004 .

[19]  P. Yu,et al.  The set of all nondominated solutions in linear cases and a multicriteria simplex method , 1975 .

[20]  J. B. G. Frenk,et al.  Dominating Sets for Convex Functions with Some Applications , 1998 .

[21]  Jörg Fliege,et al.  OLAF – A general modeling system to evaluate and optimize the location of an air polluting facility , 2001, OR Spectr..

[22]  Hannele Wallenius,et al.  Interactive multiobjective analysis and assimilative capacity-based ocean disposal decisions , 1992 .

[23]  Bernard Roy,et al.  Aide multicritère à la décision : méthodes et cas , 1993 .

[24]  Marc Gravel,et al.  A multicriterion view of optimal resource allocation in job-shop production , 1992 .

[25]  G. W. Evans,et al.  An Overview of Techniques for Solving Multiobjective Mathematical Programs , 1984 .

[26]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[27]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[28]  G. Debreu Mathematical Economics: Continuity properties of Paretian utility , 1964 .

[29]  Uttarayan Bagchi,et al.  Simultaneous Minimization of Mean and Variation of Flow Time and Waiting Time in Single Machine Systems , 1989, Oper. Res..

[30]  Brian L. Evans,et al.  An automated framework for multicriteria optimization of analog filter designs , 1999 .

[31]  Juhani Koski,et al.  Multicriteria Design Optimization , 1990 .