Hidden GPCR structural transitions addressed by multiple walker supervised molecular dynamics (mwSuMD)

G protein-coupled receptors (GPCRs) are the most abundant membrane proteins and the target of about 35% of approved drugs, but the structural basis of GPCR pharmacology is still a matter of intense study. Here, we present an unbiased molecular dynamics adaptive sampling algorithm, namely multiple walker supervised molecular dynamics (mwSuMD), that performs well on different hidden transitions involving GPCRs. Molecular dynamics (MD) simulations aim at expanding the knowledge of GPCR dynamics by building upon the recent advances in structural biology. However, the timescale limitations of classic MD hinder its applicability to numerous structural processes happening in time scales longer than microseconds (hidden structural transitions), limiting the overall MD impact on the study of GPCRs, hence our new algorithm. By increasing the complexity of the simulated process, we report the binding and unbinding of the vasopressin peptide from its receptor V2, the inactive-to-active transition of the glucagon-like peptide-1 receptor (GLP-1R), and the stimulatory (Gs) and inhibitory (Gi) G proteins binding to the adrenoreceptor β2 (β2 AR) and the adenosine 1 receptor (A1R), respectively. Finally, we report on the heterodimerization between the adenosine receptor A2 (A2AR) and the dopamine receptor D2 (D2R). We demonstrate mwSuMD usefulness for studying atomic-level GPCR transitions that are challenging to address with classic MD simulations.

[1]  Jianping Lin,et al.  The full activation mechanism of the adenosine A1 receptor revealed by GaMD and Su-GaMD simulations , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Mark J. Wall,et al.  Selective activation of Gαob by an adenosine A1 receptor agonist elicits analgesia without cardiorespiratory depression , 2022, Nature Communications.

[3]  C. Gadgil,et al.  Kinetic model of GPCR-G protein interactions reveals allokairic modulation of signaling , 2022, Nature Communications.

[4]  Wei Wu,et al.  Structural basis of peptidomimetic agonism revealed by small-molecule GLP-1R agonists Boc5 and WB4-24 , 2022, bioRxiv.

[5]  L. Pardo,et al.  Heterobivalent Ligand for the Adenosine A2A-Dopamine D2 Receptor Heteromer. , 2022, Journal of medicinal chemistry.

[6]  H. Xu,et al.  Structural perspective of class B1 GPCR signaling. , 2022, Trends in pharmacological sciences.

[7]  P. Sexton,et al.  Exploring Ligand Binding to Calcitonin Gene-Related Peptide Receptors , 2021, Frontiers in Molecular Biosciences.

[8]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[9]  Qing Liu,et al.  Molecular insights into ago-allosteric modulation of the human glucagon-like peptide-1 receptor , 2021, Nature Communications.

[10]  P. Sexton,et al.  Structural and Functional Diversity among Agonist-Bound States of the GLP-1 Receptor , 2021, bioRxiv.

[11]  Peiyi Wang,et al.  Molecular basis of ligand recognition and activation of human V2 vasopressin receptor , 2021, Cell Research.

[12]  P. Sexton,et al.  Evolving cryo-EM structural approaches for GPCR drug discovery , 2021, bioRxiv.

[13]  T. S. Kobilka,et al.  Structural basis for GLP-1 receptor activation by LY3502970, an orally active nonpeptide agonist , 2020, Proceedings of the National Academy of Sciences.

[14]  Mark J. Wall,et al.  Deciphering the Agonist Binding Mechanism to the Adenosine A1 Receptor , 2020, bioRxiv.

[15]  G. Ladds,et al.  A Multisite Model of Allosterism for the Adenosine A1 Receptor , 2020 .

[16]  Christopher A Reynolds,et al.  Addressing free fatty acid receptor 1 (FFAR1) activation using supervised molecular dynamics , 2020, Journal of Computer-Aided Molecular Design.

[17]  C. Reynolds,et al.  Supervised molecular dynamics for exploring the druggability of the SARS-CoV-2 spike protein , 2020, Journal of Computer-Aided Molecular Design.

[18]  P. Sexton,et al.  Structure and dynamics of the active Gs-coupled human secretin receptor , 2020, Nature Communications.

[19]  David E. Gloriam,et al.  Differential GLP-1R binding and activation by peptide and non-peptide agonists , 2020, bioRxiv.

[20]  J. M. Mathiesen,et al.  Structural insights into differences in G protein activation by family A and family B GPCRs , 2020, Science.

[21]  H. Xu,et al.  Structural insights into the activation of GLP-1R by a small molecule agonist , 2020, Cell Research.

[22]  F. Gervasio,et al.  A combined activation mechanism for the glucagon receptor , 2020, Proceedings of the National Academy of Sciences.

[23]  P. Sexton,et al.  Structure and Dynamics of Adrenomedullin Receptors AM1 and AM2 Reveal Key Mechanisms in the Control of Receptor Phenotype by Receptor Activity-Modifying Proteins. , 2020, ACS pharmacology & translational science.

[24]  Hualiang Jiang,et al.  Full-length human GLP-1 receptor structure without orthosteric ligands , 2020, Nature Communications.

[25]  Alessandro Laio,et al.  Using metadynamics to explore complex free-energy landscapes , 2020 .

[26]  Stefano Moro,et al.  A Supervised Molecular Dynamics Approach to Unbiased Ligand-Protein Unbinding , 2020, J. Chem. Inf. Model..

[27]  Zhipu Luo,et al.  Haloperidol bound D2 dopamine receptor structure inspired the discovery of subtype selective ligands , 2020, Nature Communications.

[28]  P. Sexton,et al.  Activation of the GLP-1 receptor by a non-peptidic agonist , 2020, Nature.

[29]  M. Dziedzicka-Wasylewska,et al.  Gγ and Gα Identity Dictate a G-Protein Heterotrimer Plasma Membrane Targeting , 2019, Cells.

[30]  Johanna K. S. Tiemann,et al.  Structural Insights into the Process of GPCR-G Protein Complex Formation , 2019, Cell.

[31]  Ron O. Dror,et al.  Molecular Dynamics Simulation for All , 2018, Neuron.

[32]  K. Fuxe,et al.  Mapping the Interface of a GPCR Dimer: A Structural Model of the A2A Adenosine and D2 Dopamine Receptor Heteromer , 2018, Front. Pharmacol..

[33]  J. McCorvy,et al.  Biased Ligands of G Protein-Coupled Receptors (GPCRs): Structure-Functional Selectivity Relationships (SFSRs) and Therapeutic Potential. , 2018, Journal of medicinal chemistry.

[34]  D. Raleigh,et al.  Molecular Signature for Receptor Engagement in the Metabolic Peptide Hormone Amylin. , 2018, ACS pharmacology & translational science.

[35]  Paul A. Insel,et al.  G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs? , 2018, Molecular Pharmacology.

[36]  J. Mccammon,et al.  Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor , 2018, Proceedings of the National Academy of Sciences.

[37]  A. Cavalli,et al.  Dynamic Docking: A Paradigm Shift in Computational Drug Discovery , 2017, Molecules.

[38]  M. Liang,et al.  Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons , 2017, Nature Communications.

[39]  Daniel M Zuckerman,et al.  Weighted Ensemble Simulation: Review of Methodology, Applications, and Software. , 2017, Annual review of biophysics.

[40]  M. Madan Babu,et al.  Selectivity determinants of GPCR–G-protein binding , 2017, Nature.

[41]  M. Sturlese,et al.  Exploring Protein-Peptide Recognition Pathways Using a Supervised Molecular Dynamics Approach. , 2017, Structure.

[42]  S. Moro,et al.  Estimation of kinetic and thermodynamic ligand-binding parameters using computational strategies. , 2017, Future medicinal chemistry.

[43]  A. IJzerman,et al.  Kinetic Aspects of the Interaction between Ligand and G Protein-Coupled Receptor: The Case of the Adenosine Receptors. , 2017, Chemical reviews.

[44]  B. L. de Groot,et al.  CHARMM36m: an improved force field for folded and intrinsically disordered proteins , 2016, Nature Methods.

[45]  R. Dey,et al.  Regulation, Signaling, and Physiological Functions of G-Proteins. , 2016, Journal of molecular biology.

[46]  A. Chattopadhyay,et al.  Cholesterol-dependent Conformational Plasticity in GPCR Dimers , 2016, Scientific Reports.

[47]  Stefano Moro,et al.  Deciphering the Complexity of Ligand-Protein Recognition Pathways Using Supervised Molecular Dynamics (SuMD) Simulations , 2016, J. Chem. Inf. Model..

[48]  L. Pardo,et al.  The pathway of ligand entry from the membrane bilayer to a lipid G protein-coupled receptor , 2016, Scientific Reports.

[49]  A. IJzerman,et al.  The Role of Target Binding Kinetics in Drug Discovery , 2015, ChemMedChem.

[50]  Thomas J Lane,et al.  MDTraj: a modern, open library for the analysis of molecular dynamics trajectories , 2014, bioRxiv.

[51]  J. Andrew McCammon,et al.  Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation , 2015, Journal of chemical theory and computation.

[52]  Ron O. Dror,et al.  Structural basis for nucleotide exchange in heterotrimeric G proteins , 2015, Science.

[53]  K. Fuxe,et al.  Dopamine heteroreceptor complexes as therapeutic targets in Parkinson’s disease , 2015, Expert opinion on therapeutic targets.

[54]  Albert C. Pan,et al.  Entry from the Lipid Bilayer: A Possible Pathway for Inhibition of a Peptide G Protein-Coupled Receptor by a Lipophilic Small Molecule. , 2015, Biochemistry.

[55]  M. Mezei,et al.  Computational approaches for modeling GPCR dimerization. , 2014, Current pharmaceutical biotechnology.

[56]  Robert T. McGibbon,et al.  MDTraj: a modern, open library for the analysis of molecular dynamics trajectories , 2014, bioRxiv.

[57]  M. Díaz-Ríos,et al.  Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review. , 2014, Life sciences.

[58]  A. Sebé-Pedrós,et al.  The Evolution of the GPCR Signaling System in Eukaryotes: Modularity, Conservation, and the Transition to Metazoan Multicellularity , 2014, Genome biology and evolution.

[59]  Alex Dickson,et al.  WExplore: hierarchical exploration of high-dimensional spaces using the weighted ensemble algorithm. , 2014, The journal of physical chemistry. B.

[60]  Stefano Moro,et al.  Supervised Molecular Dynamics (SuMD) as a Helpful Tool To Depict GPCR-Ligand Recognition Pathway in a Nanosecond Time Scale , 2014, J. Chem. Inf. Model..

[61]  Klaus Schulten,et al.  Rapid parameterization of small molecules using the force field toolkit , 2013, J. Comput. Chem..

[62]  Massimiliano Bonomi,et al.  PLUMED 2: New feathers for an old bird , 2013, Comput. Phys. Commun..

[63]  Jing Huang,et al.  CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data , 2013, J. Comput. Chem..

[64]  K. Garcia,et al.  Adrenaline-activated structure of the β2-adrenoceptor stabilized by an engineered nanobody , 2013, Nature.

[65]  Arthur Christopoulos,et al.  Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations , 2013, Proceedings of the National Academy of Sciences.

[66]  Björn Sommer,et al.  Membrane Packing Problems: A short Review on computational Membrane Modeling Methods and Tools , 2013, Computational and structural biotechnology journal.

[67]  Alexander D. MacKerell,et al.  Extension of the CHARMM general force field to sulfonyl‐containing compounds and its utility in biomolecular simulations , 2012, J. Comput. Chem..

[68]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges , 2012, J. Chem. Inf. Model..

[69]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing , 2012, J. Chem. Inf. Model..

[70]  Holger Gohlke,et al.  MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. , 2012, Journal of chemical theory and computation.

[71]  Jacob D. Durrant,et al.  Molecular dynamics simulations and drug discovery , 2011, BMC Biology.

[72]  Oliver Beckstein,et al.  MDAnalysis: A toolkit for the analysis of molecular dynamics simulations , 2011, J. Comput. Chem..

[73]  Jan H. Jensen,et al.  PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. , 2011, Journal of chemical theory and computation.

[74]  A. Holt,et al.  Lateral diffusion of membrane proteins. , 2009, Journal of the American Chemical Society.

[75]  C. Lluis,et al.  Adenosine A2A receptor-antagonist/dopamine D2 receptor-agonist bivalent ligands as pharmacological tools to detect A2A-D2 receptor heteromers. , 2009, Journal of medicinal chemistry.

[76]  M J Harvey,et al.  ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. , 2009, Journal of chemical theory and computation.

[77]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[78]  P. Escribá,et al.  Membrane interactions of G proteins and other related proteins. , 2008, Biochimica et biophysica acta.

[79]  M. Parrinello,et al.  Well-tempered metadynamics: a smoothly converging and tunable free-energy method. , 2008, Physical review letters.

[80]  S. Ball,et al.  Vasopressin and disorders of water balance: the physiology and pathophysiology of vasopressin , 2007, Annals of clinical biochemistry.

[81]  Andrei L. Lomize,et al.  OPM: Orientations of Proteins in Membranes database , 2006, Bioinform..

[82]  Robert Fredriksson,et al.  The GRAFS classification system of G-protein coupled receptors in comparative perspective. , 2005, General and comparative endocrinology.

[83]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[84]  M. Schmid,et al.  How a G Protein Binds a Membrane* , 2004, Journal of Biological Chemistry.

[85]  Nathan A. Baker,et al.  PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations , 2004, Nucleic Acids Res..

[86]  J. Mongan,et al.  Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. , 2004, The Journal of chemical physics.

[87]  Francesca Fanelli,et al.  Adenosine A2A-Dopamine D2 Receptor-Receptor Heteromerization , 2003, Journal of Biological Chemistry.

[88]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[89]  P. Hünenberger,et al.  A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations , 2001, J. Comput. Chem..

[90]  M. Birnbaumer Vasopressin Receptors , 2000, Trends in Endocrinology & Metabolism.

[91]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[92]  R. Woods,et al.  Restrained electrostatic potential atomic partial charges for condensed-phase simulations of carbohydrates. , 2000, Theochem.

[93]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[94]  Massimo Marchi,et al.  Adiabatic bias molecular dynamics: A method to navigate the conformational space of complex molecular systems , 1999 .

[95]  P. Jenner,et al.  Adenosine A2A receptor antagonists as new agents for the treatment of Parkinson's disease. , 1997, Trends in pharmacological sciences.

[96]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[97]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[98]  R. Taussig,et al.  Lipid Modification of G Proteins: alpha Subunits are Palmitoylated , 1993 .

[99]  B. Brooks,et al.  Langevin dynamics of peptides: The frictional dependence of isomerization rates of N‐acetylalanyl‐N′‐methylamide , 1992, Biopolymers.

[100]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[101]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[102]  K. Fuxe,et al.  Heteroreceptor Complexes and their Allosteric Receptor–Receptor Interactions as a Novel Biological Principle for Integration of Communication in the CNS: Targets for Drug Development , 2016, Neuropsychopharmacology.

[103]  P. Dijkman,et al.  Lipid-dependent GPCR dimerization. , 2013, Methods in cell biology.

[104]  R. Stevens,et al.  High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. , 2007, Science.

[105]  A. Sali,et al.  Modeller: generation and refinement of homology-based protein structure models. , 2003, Methods in enzymology.

[106]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[107]  William Smith,et al.  SHAKE, rattle, and roll: Efficient constraint algorithms for linked rigid bodies , 1998, J. Comput. Chem..

[108]  J. Ballesteros,et al.  [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors , 1995 .