An Investigation in Energy Consumption Analyses and Application−Level Prediction Techniques

The rapid development in the capability of hardware components of computational systems has led to a significant increase in the energy consumption of these computational systems. This has become a major issue especially if the computational environment is either resource-critical or resource-limited. Hence it is important to understand the energy consumption within these environments. This thesis describes an investigatory approach to power analysis and documents the development of an energy consumption analysis technique at the application level, and the implementation of the Power Trace Simulation and Characterisation Tools Suite (PSim). PSim uses a program characterisation technique which is inspired by the Performance Application Characterisation Environment (PACE), a performance modelling and prediction framework for parallel and distributed computing.

[1]  Mahmut T. Kandemir,et al.  Energy-performance trade-offs for spatial access methods on memory-resident data , 2002, The VLDB Journal.

[2]  Vivek Sarkar Optimized unrolling of nested loops , 2000, ICS '00.

[3]  Vipin Kumar,et al.  Information power grid: The new frontier in parallel computing? , 1999, IEEE Concurr..

[4]  Ian Foster,et al.  The Grid 2 - Blueprint for a New Computing Infrastructure, Second Edition , 1998, The Grid 2, 2nd Edition.

[5]  Anand Sivasubramaniam,et al.  Dynamic Speed Control for Server Class Disks , 2003 .

[6]  Ben Juurlink,et al.  Reducing Conflict Misses in Caches , 2003 .

[7]  Report,et al.  Public International Benchmarks for Parallel Computers , 1993 .

[8]  Giovanni De Micheli,et al.  Low power embedded software optimization using symbolic algebra , 2002, Proceedings 2002 Design, Automation and Test in Europe Conference and Exhibition.

[9]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[10]  J. Mark Bull,et al.  Benchmarking Java against C and Fortran for scientific applications , 2001, JGI '01.

[11]  D.D. Gajski,et al.  RT level power analysis , 1997, Proceedings of ASP-DAC '97: Asia and South Pacific Design Automation Conference.

[12]  David F. Bacon,et al.  Compiler transformations for high-performance computing , 1994, CSUR.

[13]  John T. Stasko,et al.  Technical note: visually encoding program test information to find faults in software , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[14]  Anantha P. Chandrakasan,et al.  Low Power Digital CMOS Design , 1995 .

[15]  Luca Benini,et al.  System-level power optimization: techniques and tools , 1999, ISLPED '99.

[16]  Sharad Malik,et al.  Instruction level power analysis and optimization of software , 1996, Proceedings of 9th International Conference on VLSI Design.

[17]  Bishop Brock,et al.  Dynamic Power Management for Embedded Systems , 2003 .

[18]  David H. Bailey,et al.  NAS parallel benchmark results , 1992, Proceedings Supercomputing '92.

[19]  Luca Benini,et al.  Source code transformation based on software cost analysis , 2001, International Symposium on System Synthesis (IEEE Cat. No.01EX526).

[20]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[21]  Farid N. Najm,et al.  A survey of power estimation techniques in VLSI circuits , 1994, IEEE Trans. Very Large Scale Integr. Syst..

[22]  Freeman Leigh Rawson MEMPOWER: A Simple Memory Power Analysis Tool Set , 2004 .

[23]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[24]  Graham R. Nudd,et al.  Analytical Modeling of Set-Associative Cache Behavior , 1999, IEEE Trans. Computers.

[25]  John Stasko,et al.  The PARADE Environment for Visualizing Parallel Program Executions: A Progress Report , 1995 .

[26]  Trevor Mudge Power: A First Class Design Constraint for Future Architecture and Automation , 2000, HiPC.

[27]  Kaivalya M. Dixit,et al.  The SPEC benchmarks , 1991, Parallel Comput..

[28]  Anthony J. G. Hey,et al.  The Genesis distributed-memory benchmarks. Part 1: Methodology and general relativity benchmark with results for the SUPRENUM computer , 1993, Concurr. Pract. Exp..

[29]  James David Turner A dynamic prediction and monitoring framework for distributed applications , 2003 .

[30]  Luca Benini,et al.  Source code optimization and profiling of energy consumption in embedded systems , 2000, ISSS '00.

[31]  Margaret M. Burnett,et al.  Visual Programming , 1995 .

[32]  Diana Marculescu On the Use of Microarchitecture-Driven Dynamic Voltage Scaling , 2000 .

[33]  Trevor N. Mudge,et al.  Power: A First-Class Architectural Design Constraint , 2001, Computer.

[34]  Vladimir Getov,et al.  PARKBENCH Report -1: Public International Benchmarks for Parallel Computers, Technical Report: UT-CS-93-213 , 1994 .

[35]  Steven P. Reiss Bee/Hive: A Software Visualization Back End , 2001 .

[36]  Giovanni De Micheli,et al.  Complex instruction and software library mapping for embedded software using symbolic algebra , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[37]  Martin D. Westhead,et al.  A benchmark suite for high performance Java , 2000, Concurr. Pract. Exp..

[38]  Monica S. Lam,et al.  The cache performance and optimizations of blocked algorithms , 1991, ASPLOS IV.

[39]  Mahmut T. Kandemir,et al.  Reducing Disk Power Consumption in Servers with DRPM , 2003, Computer.

[40]  Sharad Malik,et al.  Power analysis of embedded software: a first step towards software power minimization , 1994, IEEE Trans. Very Large Scale Integr. Syst..

[41]  P. Krishnan,et al.  Thwarting the Power-Hungry Disk , 1994, USENIX Winter.

[42]  Jack J. Dongarra Performance of various computers using standard linear equations software in a Fortran environment , 1983, CARN.

[43]  Anthony J. G. Hey,et al.  The Genesis distributed memory benchmarks , 1991, Parallel Comput..

[44]  Michael L. Scott,et al.  Energy efficient prefetching and caching , 2004 .

[45]  Massoud Pedram,et al.  Cycle-accurate macro-models for RT-level power analysis , 1998, IEEE Trans. Very Large Scale Integr. Syst..

[46]  Ami Marowka,et al.  The GRID: Blueprint for a New Computing Infrastructure , 2000, Parallel Distributed Comput. Pract..

[47]  Michael E. Wolf,et al.  The cache performance and optimizations of blocked algorithms , 1991, ASPLOS IV.

[48]  Trevor Pering,et al.  Dynamic Voltage Scaling and the Design of a Low-Power Microprocessor System , 1998 .

[49]  Andrian Marcus,et al.  Source Viewer 3D (sv3D) - a framework for software visualization , 2003, 25th International Conference on Software Engineering, 2003. Proceedings..

[50]  Jack J. Dongarra,et al.  Performance of various computers using standard linear equations software in a FORTRAN environment , 1988, CARN.

[51]  L. Benini,et al.  Cycle-accurate simulation of energy consumption in embedded systems , 1999, Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361).

[52]  Peter Wong,et al.  Bytecode Monitoring of Java Programs , 2003 .

[53]  Stephen G. Eick,et al.  Visualizing code profiling line oriented statistics , 1992, Proceedings Visualization '92.

[54]  Chandra Krintz,et al.  Application-level prediction of battery dissipation , 2004, Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758).

[55]  Rami Melhem,et al.  Energy management for real-time embedded applications with compiler support , 2003 .

[56]  Johannes G. Janzen Calculating Memory System Power for DDR SDRAM , 2001 .

[57]  Peter Y. H. Wong,et al.  CRL: A Context-Aware Request Language for Mobile Computing , 2004, ISPA.

[58]  Graham R. Nudd,et al.  Performance Modelling of Parallel and Distributed Computing Using PACE 1 , .

[59]  Mahmut T. Kandemir,et al.  Energy-conscious compilation based on voltage scaling , 2002, LCTES/SCOPES '02.

[60]  Andrian Marcus,et al.  3D representations for software visualization , 2003, SoftVis '03.

[61]  Stephen G. Eick,et al.  Seesoft-A Tool For Visualizing Line Oriented Software Statistics , 1992, IEEE Trans. Software Eng..

[62]  Giovanni De Micheli,et al.  Symbolic algebra and timing driven data-flow synthesis , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[63]  Graham R. Nudd,et al.  Pace—A Toolset for the Performance Prediction of Parallel and Distributed Systems , 2000, Int. J. High Perform. Comput. Appl..

[64]  Barry B. Brey The Intel Microprocessors , 2008 .