Renal effects of the serine protease inhibitor aprotinin in healthy conscious mice

[1]  F. Artunc,et al.  Zymogen‐locked mutant prostasin (Prss8) leads to incomplete proteolytic activation of the epithelial sodium channel (ENaC) and severely compromises triamterene tolerance in mice , 2021, Acta physiologica.

[2]  M. Ueffing,et al.  Proteasuria in nephrotic syndrome-quantification and proteomic profiling. , 2020, Journal of proteomics.

[3]  Ulrich Dirnagl,et al.  The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research* , 2020, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[4]  Ulrich Dirnagl,et al.  The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research* , 2020, BMC Veterinary Research.

[5]  F. Artunc,et al.  Plasminogen deficiency does not prevent sodium retention in a genetic mouse model of experimental nephrotic syndrome , 2020, Acta physiologica.

[6]  D. Eaton,et al.  Regulating ENaC's gate. , 2019, American journal of physiology. Cell physiology.

[7]  F. Artunc,et al.  Urokinase‐type plasminogen activator (uPA) is not essential for epithelial sodium channel (ENaC)‐mediated sodium retention in experimental nephrotic syndrome , 2019, Acta physiologica.

[8]  F. Artunc,et al.  Proteasuria—The impact of active urinary proteases on sodium retention in nephrotic syndrome , 2019, Acta physiologica.

[9]  C. Yoshioka,et al.  Structure of the human epithelial sodium channel by cryo-electron microscopy , 2018, eLife.

[10]  K. Bamberg,et al.  Na restriction activates epithelial Na channels in rat kidney through two mechanisms and decreases distal Na+ delivery , 2018, The Journal of physiology.

[11]  M. Barman,et al.  Safety of Perioperative Aprotinin Administration During Isolated Coronary Artery Bypass Graft Surgery: Insights From the ART (Arterial Revascularization Trial) , 2018, Journal of the American Heart Association.

[12]  R. Hughey,et al.  Epithelial Na+ Channel Regulation by Extracellular and Intracellular Factors. , 2018, Annual review of physiology.

[13]  F. Artunc,et al.  Aprotinin prevents proteolytic epithelial sodium channel (ENaC) activation and volume retention in nephrotic syndrome. , 2018, Kidney international.

[14]  Neal S. Gerstein,et al.  Antifibrinolytic Agents in Cardiac and Noncardiac Surgery: A Comprehensive Overview and Update. , 2017, Journal of cardiothoracic and vascular anesthesia.

[15]  F. Lang,et al.  SGK1-dependent ENaC processing and trafficking in mice with high dietary K intake and elevated aldosterone. , 2017, American journal of physiology. Renal physiology.

[16]  E. Hummler,et al.  The function and regulation of acid‐sensing ion channels (ASICs) and the epithelial Na+ channel (ENaC): IUPHAR Review 19 , 2016, British journal of pharmacology.

[17]  R. Hughey,et al.  Prostasin interacts with the epithelial Na+ channel and facilitates cleavage of the γ-subunit by a second protease. , 2014, American journal of physiology. Renal physiology.

[18]  J. Chao,et al.  Tissue kallikrein activation of the epithelial Na channel. , 2012, American journal of physiology. Renal physiology.

[19]  R. Hughey,et al.  ENaC at the Cutting Edge: Regulation of Epithelial Sodium Channels by Proteases* , 2009, The Journal of Biological Chemistry.

[20]  D. Royston,et al.  Aprotinin and renal dysfunction , 2008 .

[21]  R. Martineau,et al.  A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. , 2008, The New England journal of medicine.

[22]  W. White,et al.  The effect of aprotinin on outcome after coronary-artery bypass grafting. , 2008, The New England journal of medicine.

[23]  K. Zacharowski,et al.  Effect of aprotinin on renal dysfunction in patients undergoing on-pump and off-pump cardiac surgery: a retrospective observational study , 2008, The Lancet.

[24]  D. Royston,et al.  Aprotinin and renal dysfunction. , 2008, Expert opinion on drug safety.

[25]  O. Weisz,et al.  Epithelial Na+ Channels Are Fully Activated by Furin- and Prostasin-dependent Release of an Inhibitory Peptide from the γ-Subunit* , 2007, Journal of Biological Chemistry.

[26]  A. Hoeft,et al.  Mortality associated with aprotinin during 5 years following coronary artery bypass graft surgery. , 2007, JAMA.

[27]  I. C. Tudor,et al.  The risk associated with aprotinin in cardiac surgery. , 2006, The New England journal of medicine.

[28]  T. Jentsch,et al.  The ClC-5 chloride channel knock-out mouse – an animal model for Dent's disease , 2002, Pflügers Archiv.

[29]  C. O'Connor,et al.  The impact of renal dysfunction on aprotinin pharmacokinetics during cardiopulmonary bypass. , 1999, Anesthesia and analgesia.

[30]  E. Oestreicher,et al.  Cellular Distribution of Exogenous Aprotinin in the Rat Kidney , 1998, Biological chemistry.

[31]  B. Rossier,et al.  An epithelial serine protease activates the amiloride-sensitive sodium channel , 1997, Nature.

[32]  J. Ménard,et al.  Calcium blockade versus ACE inhibition in clipped and unclipped kidneys of 2K-1C rats. , 1994, Kidney international.

[33]  A. E. El Nahas,et al.  Role of growth hormone in the development of experimental renal scarring. , 1991, Kidney international.

[34]  A. Nasjletti,et al.  Segmental nephron function in rats treated with aprotinin, an inhibitor of kallikrein. , 1986, The Journal of pharmacology and experimental therapeutics.

[35]  O. Carretero,et al.  The effect of aprotinin (a serine protease inhibitor) on renal function and renin release. , 1983, Hypertension.

[36]  S. Spitzer,et al.  The potassium-sparing and natriuretic activity of N-amidino-3,5-diamino-6-chloropyrazinecarboxamide hydrochloride dihydrate (amiloride hydrochloride). , 1967, Journal of Pharmacology and Experimental Therapeutics.