Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes

[1]  The Application of In Situ FTIR Spectroscopy to the Study of Surface Films Formed on Lithium and Noble Metals at Low Potentials in Li Battery Electrolytes , 1991 .

[2]  Yuriy V. Mikhaylik,et al.  Low Temperature Performance of Li/S Batteries , 2003 .

[3]  C. Grey,et al.  High Field Multinuclear NMR Investigation of the SEI Layer in Lithium Rechargeable Batteries , 2005 .

[4]  W. Henderson,et al.  Glyme-lithium salt phase behavior. , 2006, The journal of physical chemistry. B.

[5]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[6]  John E. Bercaw,et al.  NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist , 2010 .

[7]  Xiao Xing Liang,et al.  Improved cycling performances of lithium sulfur batteries with LiNO 3-modified electrolyte , 2011 .

[8]  B. Mizaikoff,et al.  Nitrogen-doped diamond-like carbon as optically transparent electrode for infrared attenuated total reflection spectroelectrochemistry. , 2011, The Analyst.

[9]  Shengbo Zhang,et al.  Effect of Discharge Cutoff Voltage on Reversibility of Lithium/Sulfur Batteries with LiNO3-Contained Electrolyte , 2012 .

[10]  Shengbo Zhang,et al.  A proof-of-concept lithium/sulfur liquid battery with exceptionally high capacity density , 2012 .

[11]  Shengdi Zhang Role of LiNO3 in rechargeable lithium/sulfur battery , 2012 .

[12]  Shizhao Xiong,et al.  Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries , 2012 .

[13]  Guangyuan Zheng,et al.  A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage , 2013 .

[14]  Gregory V. Chase,et al.  Synergistic Effect of Oxygen and LiNO3 on the Interfacial Stability of Lithium Metal in a Li/O2 Battery , 2013 .

[15]  Ji‐Guang Zhang,et al.  Effects of Electrolyte Salts on the Performance of Li–O2 Batteries , 2013 .

[16]  Guoqiang Ma,et al.  A lithium anode protection guided highly-stable lithium-sulfur battery. , 2014, Chemical communications.

[17]  S. Passerini,et al.  Ionic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling , 2014, International journal of molecular sciences.

[18]  Dipan Kundu,et al.  Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries , 2014, Nature Communications.

[19]  Terence J. Lozano,et al.  Failure Mechanism for Fast‐Charged Lithium Metal Batteries with Liquid Electrolytes , 2015 .

[20]  Hong‐Jie Peng,et al.  Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection. , 2015, ChemSusChem.

[21]  Dongping Lu,et al.  Following the transient reactions in lithium-sulfur batteries using an in situ nuclear magnetic resonance technique. , 2015, Nano letters.

[22]  Yi Cui,et al.  Enhanced Cyclability of Li/Polysulfide Batteries by a Polymer-Modified Carbon Paper Current Collector. , 2015, ACS applied materials & interfaces.

[23]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[24]  Guangyuan Zheng,et al.  The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth , 2015, Nature Communications.

[25]  Ayyakkannu Manivannan,et al.  Direct Measurement of Polysulfide Shuttle Current: A Window into Understanding the Performance of Lithium-Sulfur Cells , 2015 .

[26]  Jun Liu,et al.  On the Way Toward Understanding Solution Chemistry of Lithium Polysulfides for High Energy Li–S Redox Flow Batteries , 2015 .

[27]  D. Aurbach,et al.  Catalytic Behavior of Lithium Nitrate in Li-O2 Cells. , 2015, ACS applied materials & interfaces.

[28]  Xueping Gao,et al.  Protected lithium anode with porous Al2O3 layer for lithium–sulfur battery , 2015 .

[29]  Ji‐Guang Zhang,et al.  Dendrite-Free Li Deposition Using Trace-Amounts of Water as an Electrolyte Additive , 2015 .

[30]  D. Aurbach,et al.  The Effect of Interactions and Reduction Products of LiNO3, the Anti-Shuttle Agent, in Li-S Battery Systems , 2015 .

[31]  Mihui Park,et al.  Recent Developments of the Lithium Metal Anode for Rechargeable Non‐Aqueous Batteries , 2016 .

[32]  Ji‐Guang Zhang,et al.  Effect of the Anion Activity on the Stability of Li Metal Anodes in Lithium‐Sulfur Batteries , 2016 .

[33]  Lan Zhou,et al.  Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst , 2016, Scientific Reports.

[34]  N. Togasaki,et al.  Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium−oxygen battery , 2016 .

[35]  Xin-Bing Cheng,et al.  Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode , 2016 .

[36]  Shengqi Zhang A new finding on the role of LiNO3 in lithium-sulfur battery , 2016 .

[37]  J. Janek,et al.  The critical role of lithium nitrate in the gas evolution of lithium–sulfur batteries , 2016 .

[38]  Jianming Zheng,et al.  Anode‐Free Rechargeable Lithium Metal Batteries , 2016 .

[39]  Rui Zhang,et al.  A Review of Solid Electrolyte Interphases on Lithium Metal Anode , 2015, Advanced science.

[40]  Kevin G. Gallagher,et al.  Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries , 2016 .

[41]  Yu-Guo Guo,et al.  An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes , 2016, Advanced materials.