Fully Discrete, Entropy Conservative Schemes of ArbitraryOrder

We consider weak solutions of (hyperbolic or hyperbolic-elliptic) systems of conservation laws in one-space dimension and their approximation by finite difference schemes in conservative form. The systems under consideration are endowed with an entropy-entropy flux pair. We introduce a general approach to construct second and third order accurate, fully discrete (in both space and time) entropy conservative schemes. In general, these schemes are fully nonlinear implicit, but in some important cases can be explicit or linear implicit. Furthermore, semidiscrete entropy conservative schemes of arbitrary order are presented. The entropy conservative schemes are used to construct a numerical method for the computation of weak solutions containing nonclassical regularization-sensitive shock waves. Finally, specific examples are investigated and tested numerically. Our approach extends the results and techniques by Tadmor [in Numerical Methods for Compressible Flows---Finite Difference, Element and Volume Techniques, ASME, New York, 1986, pp. 149--158], LeFloch and Rohde [SIAM J. Numer. Anal., 37 (2000), pp. 2023--2060].

[1]  J. K. Knowles,et al.  Implications of viscosity and strain-gradient effects for the kinetics of propagating phase boundaries in solids , 1991 .

[2]  Philippe G. LeFloch,et al.  Nonclassical Shocks and Kinetic Relations: Strictly Hyperbolic Systems , 2000, SIAM J. Math. Anal..

[3]  Philippe G. LeFloch,et al.  High-Order Schemes, Entropy Inequalities, and Nonclassical Shocks , 2000, SIAM J. Numer. Anal..

[4]  Eitan Tadmor,et al.  The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .

[5]  Thomas Sonar,et al.  Entropy production in second-order three-point schemes , 1992 .

[6]  C. Chalons,et al.  High-order entropy-conservative schemes and kinetic relations for van der Waals fluids , 2001 .

[7]  P. LeFloch,et al.  Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .

[8]  B. Hayes,et al.  Non-Classical Shocks and Kinetic Relations: Scalar Conservation Laws , 1997 .

[9]  Patrick Joly,et al.  Construction and analysis of higher order finite difference schemes for the 1D wave equation , 2000 .

[10]  M. Schonbek,et al.  Convergence of solutions to nonlinear dispersive equations , 1982 .

[11]  R. J. Diperna,et al.  Decay of solutions of hyperbolic systems of conservation laws with a convex extension , 1977 .

[12]  Philippe G. LeFloch,et al.  An Introduction to Nonclassical Shocks of Systems of Conservation Laws , 1997, Theory and Numerics for Conservation Laws.

[13]  B. McKinney,et al.  Traveling Wave Solutions of the Modified Korteweg-deVries-Burgers Equation , 1995 .

[14]  Benedetto Piccoli,et al.  Global Continuous Riemann Solver for Nonlinear Elasticity , 2001 .

[15]  D. Aregba-Driollet,et al.  Convergence of numerical algorithms for semilinear hyperbolic system , 1999 .

[16]  Michael Shearer,et al.  The Riemann problem for a class of conservation laws of mixed type , 1982 .

[17]  B. Hayes,et al.  Nonclassical Shocks and Kinetic Relations: Finite Difference Schemes , 1998 .

[18]  M. Thanh,et al.  Non-classical Riemann solvers and kinetic relations. II. An hyperbolic–elliptic model of phase-transition dynamics , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[19]  Eitan Tadmor Entropy conservative finite element schemes , 1986 .

[20]  J. K. Knowles,et al.  Kinetic relations and the propagation of phase boundaries in solids , 1991 .

[21]  L. Truskinovskii,et al.  Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium☆ , 1987 .

[22]  Philippe G. LeFloch,et al.  A fully discrete scheme for diffusive-dispersive conservation laws , 2001, Numerische Mathematik.

[23]  Eitan Tadmor,et al.  Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes , 1984 .

[24]  P. Lax,et al.  Systems of conservation equations with a convex extension. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[25]  P. Lax,et al.  Systems of conservation laws , 1960 .