Rotation of laser beams with zero of the orbital angular momentum

We show that among the multitude of rotating light beams whose complex amplitude can be represented as a linear superposition of the Laguerre–Gaussian (LG) modes with definite numbers there are light beams with zero orbital angular momentum (OAM) and vice versa, multi-mode LG beams that show no rotation and are lacking the radially symmetric intensity distribution can possess the non-zero OAM. Also, we give examples of the rotating light beams with zero OAM, represented as a superposition of the Bessel and new hypergeometric modes. Using an SLM, we generate a rotating Bessel beam with zero OAM for the first time.

[1]  K. Jefimovs,et al.  Generation and selection of laser beams represented by a superposition of two angular harmonics , 2004 .

[2]  Victor A. Soifer,et al.  An algorithm for the generation of laser beams with longitudinal periodicity : rotating images , 1997 .

[3]  Ajay Ghosh,et al.  Generation of an elliptic Bessel beam. , 2006, Optics letters.

[4]  Willard Miller,et al.  Symmetry and Separation of Variables , 1977 .

[5]  M S Soskin,et al.  Centrifugal transformation of the transverse structure of freely propagating paraxial light beams. , 2006, Optics letters.

[6]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[7]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.

[8]  A. A. Almazov,et al.  Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  Victor A. Soifer,et al.  Rotation of multimode Gauss-Laguerre light beams in free space , 1997 .

[10]  Mark Bashkansky,et al.  Generation of hollow beams by using a binary spatial light modulator. , 2006, Optics letters.

[11]  Vladimir G. Volostnikov,et al.  Spiral-type beams , 1993 .

[12]  Alexander Jesacher,et al.  Size selective trapping with optical "cogwheel" tweezers. , 2004, Optics express.

[13]  K. Jefimovs,et al.  Rotation of microparticles with Bessel beams generated by diffractive elements , 2004 .

[14]  Mark R Dennis Rows of optical vortices from elliptically perturbing a high-order beam. , 2006, Optics letters.

[15]  S. López-Aguayo,et al.  Stable rotating dipole solitons in nonlocal optical media. , 2005, Optics letters.

[16]  Victor A. Soifer,et al.  Methods for Computer Design of Diffractive Optical Elements , 2001 .

[17]  Shamir,et al.  Wave propagation with rotating intensity distributions. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Alexander Jesacher,et al.  Diffractive optical tweezers in the Fresnel regime. , 2004, Optics express.

[19]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.