Jagged1-Notch1-deployed tumor perivascular niche promotes breast cancer stem cell phenotype through Zeb1

[1]  J. Crabtree,et al.  Notch Signaling Regulates Mitochondrial Metabolism and NF-κB Activity in Triple-Negative Breast Cancer Cells via IKKα-Dependent Non-canonical Pathways , 2018, Front. Oncol..

[2]  Milind B. Suraokar,et al.  The epithelial-to-mesenchymal transition activator ZEB1 initiates a prometastatic competing endogenous RNA network. , 2018, The Journal of clinical investigation.

[3]  A. Bass,et al.  Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma , 2017, Nature Communications.

[4]  Colin J. Daniel,et al.  ZEB1-repressed microRNAs inhibit autocrine signaling that promotes vascular mimicry of breast cancer cells , 2017, Oncogene.

[5]  R. Kaplan,et al.  KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis , 2017, Nature Medicine.

[6]  G. Berry,et al.  The microvascular niche instructs T cells in large vessel vasculitis via the VEGF-Jagged1-Notch pathway , 2017, Science Translational Medicine.

[7]  Jill P. Mesirov,et al.  Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway , 2017, Nature.

[8]  C. Pilarsky,et al.  The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer , 2017, Nature Cell Biology.

[9]  F. Bertucci,et al.  A stemness-related ZEB1–MSRB3 axis governs cellular pliancy and breast cancer genome stability , 2017, Nature Medicine.

[10]  D. Sprinzak,et al.  Endothelial Notch1 Activity Facilitates Metastasis. , 2017, Cancer cell.

[11]  R. Weinberg,et al.  Inflammation Triggers Zeb1-Dependent Escape from Tumor Latency. , 2016, Cancer research.

[12]  Wei Sun,et al.  ZEB1 Upregulates VEGF Expression and Stimulates Angiogenesis in Breast Cancer , 2016, PloS one.

[13]  V. LeBleu,et al.  EMT Program is Dispensable for Metastasis but Induces Chemoresistance in Pancreatic Cancer , 2015, Nature.

[14]  Najeeb M. Halabi,et al.  Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche , 2015, Journal of Translational Medicine.

[15]  Li Ma,et al.  ZEB1: At the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance , 2015, Cell cycle.

[16]  B. Osborne,et al.  Non-Canonical Notch Signaling in Cancer and Immunity , 2014, Front. Oncol..

[17]  Y. Sekino,et al.  Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation , 2014, Nature Communications.

[18]  M. Hung,et al.  MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis. , 2014, The Journal of clinical investigation.

[19]  R. Weinberg,et al.  Tackling the cancer stem cells — what challenges do they pose? , 2014, Nature Reviews Drug Discovery.

[20]  W. Woodward,et al.  ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1 , 2014, Nature Cell Biology.

[21]  S. Rafii,et al.  Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. , 2014, Cancer cell.

[22]  J. Sage,et al.  From fly wings to targeted cancer therapies: a centennial for notch signaling. , 2014, Cancer cell.

[23]  G. Christofori,et al.  VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation. , 2014, Cancer research.

[24]  J. Lachuer,et al.  A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. , 2013, Cancer cell.

[25]  M. Ikawa,et al.  MiR-200b and miR-429 Function in Mouse Ovulation and Are Essential for Female Fertility , 2013, Science.

[26]  Robert A. Weinberg,et al.  Poised Chromatin at the ZEB1 Promoter Enables Breast Cancer Cell Plasticity and Enhances Tumorigenicity , 2013, Cell.

[27]  Mina J. Bissell,et al.  The perivascular niche regulates breast tumor dormancy , 2013, Nature Cell Biology.

[28]  L. Ellis,et al.  Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. , 2013, Cancer cell.

[29]  E. R. Andersson,et al.  Non-canonical Notch signaling activates IL-6/JAK/STAT signaling in breast tumor cells and is controlled by p53 and IKKα/IKKβ , 2012, Oncogene.

[30]  R. Weinberg,et al.  Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. , 2012, Seminars in cancer biology.

[31]  R. Brekken,et al.  Epithelial-mesenchymal transition increases tumor sensitivity to COX-2 inhibition by apricoxib. , 2012, Carcinogenesis.

[32]  D. Birnbaum,et al.  MicroRNA93 Regulates Proliferation and Differentiation of Normal and Malignant Breast Stem Cells , 2012, PLoS genetics.

[33]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[34]  D. Cheresh,et al.  Tumor angiogenesis: molecular pathways and therapeutic targets , 2011, Nature Medicine.

[35]  F. DiMeco,et al.  Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. , 2011, Cancer research.

[36]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[37]  Masahiro Aoki,et al.  Suppression of colon cancer metastasis by Aes through inhibition of Notch signaling. , 2011, Cancer cell.

[38]  Shahin Rafii,et al.  Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors , 2010, Nature Reviews Cancer.

[39]  Julia Schüler,et al.  The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs , 2009, Nature Cell Biology.

[40]  L. Teng,et al.  Epithelial transformation by KLF4 requires Notch1 but not canonical Notch1 signaling , 2009, Cancer biology & therapy.

[41]  G. Smyth,et al.  ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. , 2009, Journal of immunological methods.

[42]  Michael F. Clarke,et al.  Downregulation of miRNA-200c Links Breast Cancer Stem Cells with Normal Stem Cells , 2009, Cell.

[43]  Zhiwei Wang,et al.  Emerging role of Notch in stem cells and cancer. , 2009, Cancer letters.

[44]  J. Visvader,et al.  Cancer stem cells in solid tumours: accumulating evidence and unresolved questions , 2008, Nature Reviews Cancer.

[45]  Baocun Sun,et al.  BMP-6 promotes E-cadherin expression through repressing δEF1 in breast cancer cells , 2007, BMC Cancer.

[46]  Cun-Yu Wang,et al.  Notch signaling in the regulation of tumor angiogenesis. , 2006, Trends in cell biology.

[47]  Birgit Kasch,et al.  Next Generation , 2005, Im OP.

[48]  G. Berx,et al.  DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells , 2005, Oncogene.

[49]  I. Weissman,et al.  Stem cells, cancer, and cancer stem cells , 2001, Nature.

[50]  H. Kikutani,et al.  Impairment of  T Cell Development in δ EF1 Mutant Mice , 1997, The Journal of experimental medicine.

[51]  A. Puisieux,et al.  Pleiotropic Roles for ZEB1 in Cancer. , 2018, Cancer research.

[52]  Jean Paul Thiery,et al.  EMT: 2016 , 2016, Cell.

[53]  J. Pollard,et al.  Animal Model Progression to Malignancy in the Polyoma Middle T Oncoprotein Mouse Breast Cancer Model Provides a Reliable Model for Human Diseases , 2003 .

[54]  H. Kondoh,et al.  DeltaEF1, a zinc finger and homeodomain transcription factor, is required for skeleton patterning in multiple lineages. , 1998, Development.

[55]  Douglas Hanahan,et al.  Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment Prospects and Obstacles for Therapeutic Targeting of Function-enabling Stromal Cell Types , 2022 .