Two-sided Grassmann–Rayleigh quotient iteration

The two-sided Rayleigh quotient iteration proposed by Ostrowski computes a pair of corresponding left–right eigenvectors of a matrix C. We propose a Grassmannian version of this iteration, i.e., its iterates are pairs of p-dimensional subspaces instead of one-dimensional subspaces in the classical case. The new iteration generically converges locally cubically to the pairs of left–right p-dimensional invariant subspaces of C. Moreover, Grassmannian versions of the Rayleigh quotient iteration are given for the generalized Hermitian eigenproblem, the Hamiltonian eigenproblem and the skew-Hamiltonian eigenproblem.

[1]  Peter Benner,et al.  Numerical Computation of Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Pencils , 2002, SIAM J. Matrix Anal. Appl..

[2]  A. M. Ostrowski,et al.  On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. III , 1959 .

[3]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[4]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[5]  Ilse C. F. Ipsen Computing an Eigenvector with Inverse Iteration , 1997, SIAM Rev..

[6]  Gene H. Golub,et al.  Matrix Computations, Third Edition , 1996 .

[7]  Gene H. Golub,et al.  Matrix computations , 1983 .

[8]  Beresford N. Parlett,et al.  The Symmetric Eigenvalue Problem (Classics in Applied Mathematics, Number 20) , 1999 .

[9]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[10]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[11]  G. Stewart Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .

[12]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[13]  Robert E. Mahony,et al.  Cubically Convergent Iterations for Invariant Subspace Computation , 2004, SIAM J. Matrix Anal. Appl..

[14]  L. Rayleigh,et al.  The theory of sound , 1894 .

[15]  B MolerCleve,et al.  Solution of the Sylvester matrix equation AXBT + CXDT = E , 1992 .

[16]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[17]  A. Ostrowski On the convergence of the Rayleigh Quotient Iteration for the computation of characteristic roots and vectors. VI , 1959 .

[18]  M. Hochstenbach,et al.  Two-sided and alternating Jacobi-Davidson , 2001 .

[19]  F. Chatelin Simultaneous Newton’s Iteration for the Eigenproblem , 1984 .

[20]  H. Schwetlick,et al.  A modified block Newton iteration for approximating an invariant subspace of a symmetric matrix , 1998 .

[21]  Li Qiu,et al.  Unitarily Invariant Metrics on the Grassmann Space , 2005, SIAM J. Matrix Anal. Appl..

[22]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[23]  W. J. Harvey,et al.  THE COMPLEX ANALYTIC THEORY OF TEICHMÜLLER SPACES (Canadian Mathematical Society Series of Monographs and Advanced Texts) , 1991 .

[24]  P. Absil,et al.  Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation , 2004 .

[25]  G. Stewart A generalization of Saad's theorem on Rayleigh–Ritz approximations , 2001 .

[26]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[27]  David S. Watkins,et al.  Understanding the $QR$ Algorithm , 1982 .

[28]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[29]  S. H. Crandall Iterative procedures related to relaxation methods for eigenvalue problems , 1951 .

[30]  V. Simoncini,et al.  On the numerical solution ofAX −XB =C , 1996 .

[31]  J. Smillie,et al.  The dynamics of Rayleigh quotient iteration , 1989 .

[32]  B. Parlett The Rayleigh Quotient Iteration and Some Generalizations for Nonnormal Matrices , 1974 .

[33]  James Demmel,et al.  Three methods for refining estimates of invariant subspaces , 1987, Computing.

[34]  J. H. Wilkinson,et al.  Inverse Iteration, Ill-Conditioned Equations and Newton’s Method , 1979 .

[35]  K. Scharnhorst,et al.  Angles in Complex Vector Spaces , 1999 .

[36]  J. H. Wilkinson,et al.  IMPROVING THE ACCURACY OF COMPUTED EIGENVALUES AND EIGENVECTORS , 1983 .

[37]  Zhongxiao Jia,et al.  An analysis of the Rayleigh-Ritz method for approximating eigenspaces , 2001, Math. Comput..

[38]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[39]  Alan J. Laub,et al.  Solution of the Sylvester matrix equation AXBT + CXDT = E , 1992, TOMS.

[40]  Jan Brandts,et al.  Computing tall skinny solutions of AX-XB=C , 2003, Math. Comput. Simul..

[41]  J. Craggs Applied Mathematical Sciences , 1973 .

[42]  Steve Batterson,et al.  Rayleigh quotient iteration for nonsymmetric matrices , 1990 .

[43]  William Kahan,et al.  On the convergence of a practical QR algorithm , 1968, IFIP Congress.

[44]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[45]  Aurél Galántai,et al.  Jordan's principal angles in complex vector spaces , 2006, Numer. Linear Algebra Appl..

[46]  P. Lancaster,et al.  Invariant subspaces of matrices with applications , 1986 .

[47]  Robert E. Mahony,et al.  A Grassmann-Rayleigh Quotient Iteration for Computing Invariant Subspaces , 2002, SIAM Rev..

[48]  Lars Eldén,et al.  Adaptive Eigenvalue Computations Using Newton's Method on the Grassmann Manifold , 2002, SIAM J. Matrix Anal. Appl..

[49]  A. Ostrowski On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. I , 1957 .