Two-sided Grassmann–Rayleigh quotient iteration
暂无分享,去创建一个
[1] Peter Benner,et al. Numerical Computation of Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Pencils , 2002, SIAM J. Matrix Anal. Appl..
[2] A. M. Ostrowski,et al. On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. III , 1959 .
[3] Richard H. Bartels,et al. Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.
[4] R. Abraham,et al. Manifolds, Tensor Analysis, and Applications , 1983 .
[5] Ilse C. F. Ipsen. Computing an Eigenvector with Inverse Iteration , 1997, SIAM Rev..
[6] Gene H. Golub,et al. Matrix Computations, Third Edition , 1996 .
[7] Gene H. Golub,et al. Matrix computations , 1983 .
[8] Beresford N. Parlett,et al. The Symmetric Eigenvalue Problem (Classics in Applied Mathematics, Number 20) , 1999 .
[9] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[10] Levent Tunçel,et al. Optimization algorithms on matrix manifolds , 2009, Math. Comput..
[11] G. Stewart. Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .
[12] G. Golub,et al. A Hessenberg-Schur method for the problem AX + XB= C , 1979 .
[13] Robert E. Mahony,et al. Cubically Convergent Iterations for Invariant Subspace Computation , 2004, SIAM J. Matrix Anal. Appl..
[14] L. Rayleigh,et al. The theory of sound , 1894 .
[15] B MolerCleve,et al. Solution of the Sylvester matrix equation AXBT + CXDT = E , 1992 .
[16] G. W. Stewart,et al. Matrix algorithms , 1998 .
[17] A. Ostrowski. On the convergence of the Rayleigh Quotient Iteration for the computation of characteristic roots and vectors. VI , 1959 .
[18] M. Hochstenbach,et al. Two-sided and alternating Jacobi-Davidson , 2001 .
[19] F. Chatelin. Simultaneous Newton’s Iteration for the Eigenproblem , 1984 .
[20] H. Schwetlick,et al. A modified block Newton iteration for approximating an invariant subspace of a symmetric matrix , 1998 .
[21] Li Qiu,et al. Unitarily Invariant Metrics on the Grassmann Space , 2005, SIAM J. Matrix Anal. Appl..
[22] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[23] W. J. Harvey,et al. THE COMPLEX ANALYTIC THEORY OF TEICHMÜLLER SPACES (Canadian Mathematical Society Series of Monographs and Advanced Texts) , 1991 .
[24] P. Absil,et al. Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation , 2004 .
[25] G. Stewart. A generalization of Saad's theorem on Rayleigh–Ritz approximations , 2001 .
[26] 採編典藏組. Society for Industrial and Applied Mathematics(SIAM) , 2008 .
[27] David S. Watkins,et al. Understanding the $QR$ Algorithm , 1982 .
[28] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[29] S. H. Crandall. Iterative procedures related to relaxation methods for eigenvalue problems , 1951 .
[30] V. Simoncini,et al. On the numerical solution ofAX −XB =C , 1996 .
[31] J. Smillie,et al. The dynamics of Rayleigh quotient iteration , 1989 .
[32] B. Parlett. The Rayleigh Quotient Iteration and Some Generalizations for Nonnormal Matrices , 1974 .
[33] James Demmel,et al. Three methods for refining estimates of invariant subspaces , 1987, Computing.
[34] J. H. Wilkinson,et al. Inverse Iteration, Ill-Conditioned Equations and Newton’s Method , 1979 .
[35] K. Scharnhorst,et al. Angles in Complex Vector Spaces , 1999 .
[36] J. H. Wilkinson,et al. IMPROVING THE ACCURACY OF COMPUTED EIGENVALUES AND EIGENVECTORS , 1983 .
[37] Zhongxiao Jia,et al. An analysis of the Rayleigh-Ritz method for approximating eigenspaces , 2001, Math. Comput..
[38] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[39] Alan J. Laub,et al. Solution of the Sylvester matrix equation AXBT + CXDT = E , 1992, TOMS.
[40] Jan Brandts,et al. Computing tall skinny solutions of AX-XB=C , 2003, Math. Comput. Simul..
[41] J. Craggs. Applied Mathematical Sciences , 1973 .
[42] Steve Batterson,et al. Rayleigh quotient iteration for nonsymmetric matrices , 1990 .
[43] William Kahan,et al. On the convergence of a practical QR algorithm , 1968, IFIP Congress.
[44] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[45] Aurél Galántai,et al. Jordan's principal angles in complex vector spaces , 2006, Numer. Linear Algebra Appl..
[46] P. Lancaster,et al. Invariant subspaces of matrices with applications , 1986 .
[47] Robert E. Mahony,et al. A Grassmann-Rayleigh Quotient Iteration for Computing Invariant Subspaces , 2002, SIAM Rev..
[48] Lars Eldén,et al. Adaptive Eigenvalue Computations Using Newton's Method on the Grassmann Manifold , 2002, SIAM J. Matrix Anal. Appl..
[49] A. Ostrowski. On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. I , 1957 .