A domain splitting algorithm for the mathematical functions code generator
暂无分享,去创建一个
[1] Sylvain Chevillard,et al. Évaluation efficace de fonctions numériques - Outils et exemples. (Efficient evaluation of numerical functions - Tools and examples) , 2009 .
[2] E. Cheney. Introduction to approximation theory , 1966 .
[3] Christoph Quirin Lauter,et al. Replacing Branches by Polynomials in Vectorizable Elementary Functions , 2014, SCAN.
[4] Ping Tak Peter Tang. Table-driven implementation of the logarithm function in IEEE floating-point arithmetic , 1990, TOMS.
[5] Christoph Quirin Lauter,et al. Metalibm: A Mathematical Functions Code Generator , 2014, ICMS.
[6] Florent de Dinechin,et al. Certifying the Floating-Point Implementation of an Elementary Function Using Gappa , 2011, IEEE Transactions on Computers.
[7] Christoph Quirin Lauter,et al. Certified and Fast Computation of Supremum Norms of Approximation Errors , 2009, 2009 19th IEEE Symposium on Computer Arithmetic.
[8] Florent de Dinechin,et al. Code Generators for Mathematical Functions , 2015, 2015 IEEE 22nd Symposium on Computer Arithmetic.
[9] Nicolas Brisebarre,et al. Efficient polynomial L-approximations , 2007, 18th IEEE Symposium on Computer Arithmetic (ARITH '07).
[10] Ping Tak Peter Tang. Table-driven implementation of the exponential function in IEEE floating-point arithmetic , 1989, TOMS.
[11] Ping Tak Peter Tang. Table-driven implementation of the Expm1 function in IEEE floating-point arithmetic , 1992, TOMS.