Synthesis and properties of triazole-linked RNA.

[1]  S. Kennedy,et al.  Amides as excellent mimics of phosphate linkages in RNA. , 2011, Angewandte Chemie.

[2]  T. Brown,et al.  New strategy for the synthesis of chemically modified RNA constructs exemplified by hairpin and hammerhead ribozymes , 2010, Proceedings of the National Academy of Sciences.

[3]  D. Corey,et al.  Clinical status of duplex RNA. , 2010, Bioorganic & medicinal chemistry letters.

[4]  D. Turner,et al.  RNA Internal Loops with Tandem AG Pairs: The Structure of the 5′GAGU/3′UGAG Loop Can Be Dramatically Different from Others, Including 5′AAGU/3′UGAA† , 2010, Biochemistry.

[5]  P. Elchinger,et al.  Pyrimidine-Purine and Pyrimidine Heterodinucleosides Synthesis Containing a Triazole Linkage , 2010, Nucleosides, nucleotides & nucleic acids.

[6]  T. Brown,et al.  Click chemistry with DNA. , 2010, Chemical Society reviews.

[7]  M. Egli,et al.  Interplay of structure, hydration and thermal stability in formacetal modified oligonucleotides: RNA may tolerate nonionic modifications better than DNA. , 2009, Journal of the American Chemical Society.

[8]  H. Isobe,et al.  Convergent synthesis of oligomers of triazole-linked DNA analogue (TLDNA) in solution phase , 2009 .

[9]  T. Brown,et al.  Synthesis and polymerase chain reaction amplification of DNA strands containing an unnatural triazole linkage. , 2009, Journal of the American Chemical Society.

[10]  J. Watts,et al.  Chemically modified siRNA: tools and applications. , 2008, Drug discovery today.

[11]  E. Nakamura,et al.  Triazole-linked analogue of deoxyribonucleic acid ((TL)DNA): design, synthesis, and double-strand formation with natural DNA. , 2008, Organic letters.

[12]  R. Granet,et al.  A rapid efficient microwave-assisted synthesis of a 3′,5′-pentathymidine by copper(I)-catalyzed [3+2] cycloaddition , 2008 .

[13]  R. Granet,et al.  Microwave-assisted synthesis of a triazole-linked 3′–5′ dithymidine using click chemistry , 2008 .

[14]  David R Corey,et al.  Chemical modification: the key to clinical application of RNA interference? , 2007, The Journal of clinical investigation.

[15]  A. Dondoni,et al.  Model Studies Toward the Synthesis of Thymidine Oligonucleotides with Triazole Internucleosidic LinkagesVia Iterative Cu(I)-Promoted Azide–Alkyne Ligation Chemistry , 2007 .

[16]  R. Strömberg,et al.  Oligoribonucleotide Analogues Containing a Mixed Backbone of Phosphodiester and Formacetal Internucleoside Linkages, Together with Vicinal 2′‐O‐Methyl Groups , 2007, Chembiochem : a European journal of chemical biology.

[17]  E. Rozners Carbohydrate Chemistry for RNA Interference: Synthesis and Properties of RNA Analogues Modified in Sugar-Phosphate Backbone , 2006 .

[18]  M. Manoharan RNA interference and chemically modified small interfering RNAs. , 2004, Current opinion in chemical biology.

[19]  R. Strömberg,et al.  Synthesis and properties of RNA analogues having amides as interuridine linkages at selected positions. , 2003, Journal of the American Chemical Society.

[20]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[21]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[22]  K. Altmann,et al.  Replacement of the phosphodiester linkage in oligonucleotides by heterocycles: synthesis of thymidine dinucleotide analogs with triazole-modified backbones , 1997 .

[23]  K. Altmann,et al.  Replacement of the phosphodiester linkage in oligonucleotides by heterocycles: the effect of triazole- and imidazole-modified backbones on DNA/RNA duplex stability , 1997 .

[24]  R. Strömberg,et al.  SYNTHESIS AND PROPERTIES OF OLIGORIBONUCLEOTIDE ANALOGS HAVING FORMACETAL INTERNUCLEOSIDE LINKAGES , 1997 .

[25]  Beat Ernst,et al.  Drug discovery today. , 2003, Current topics in medicinal chemistry.

[26]  M. Sekine,et al.  One-step synthesis of 5′-azido-nucleosides , 1980 .