An exterior point algorithm for some linear complementarity problems with applications

An exterior point algorithm for positive definite (PD) and positive semidefinite (PSD) linear complementarity problems (LCPs) is introduced. The algorithm exploits the ellipsoid method to find a starting point in the case of positive definite linear complementarity problems (PDLCPs) and to check for the problem feasibility in case of positive semidefinite linear complementarity problems (PSDLCPs). The algorithm starts from a point on the boundary on which the complementarity condition is satisfied and generates a sequence of points on that same boundary. These points converge to the solution. The algorithm is modified to speed up the convergence for some PDLCPs and PSDLCPs that arise in certain mechanical models. A numerical example and a practical example in robotics are solved to test the algorithm.

[1]  M. Todd,et al.  The Ellipsoid Method: A Survey , 1980 .

[2]  Michael J. Todd,et al.  Feature Article - The Ellipsoid Method: A Survey , 1981, Oper. Res..

[3]  M. Akgül,et al.  Topics in relaxation and ellipsoidal methods , 1984 .

[4]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[5]  Philip E. Gill,et al.  Numerical Linear Algebra and Optimization , 1991 .

[6]  Nimrod Megiddo,et al.  A unified approach to interior point algorithms for linear complementarity problems: A summary , 1991, Oper. Res. Lett..

[7]  T. Terlaky,et al.  A Polynomial Method of Weighted Centers for Convex Quadratic Programming , 1991 .

[8]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[9]  B. Jansen,et al.  A Family of Polynomial Affine Scaling Algorithms for Positive Semi-Definite Linear Complementarity P , 1993 .

[10]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[11]  E. Spedicato Algorithms for continuous optimization : the state of the art , 1994 .

[12]  J. Júdice Algorithms for Linear Complementarity Problems , 1994 .

[13]  Tamás Terlaky,et al.  A Family of Polynomial Affine Scaling Algorithms for Positive SemiDefinite Linear Complementarity Problems , 1997, SIAM J. Optim..

[14]  Tibor Illés,et al.  Polynomial affine-scaling algorithms for P*(k) linear complementary problems , 1997 .

[15]  Tamás Terlaky,et al.  Criss-cross methods: A fresh view on pivot algorithms , 1997, Math. Program..

[16]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[17]  Masakazu Kojima,et al.  Local convergence of predictor—corrector infeasible-interior-point algorithms for SDPs and SDLCPs , 1998, Math. Program..

[18]  Masakazu Kojima,et al.  Search directions in the SDP and the monotone SDLCP: generalization and inexact computation , 1999, Math. Program..

[19]  Clovis C. Gonzaga,et al.  Complexity of Predictor-Corrector Algorithms for LCP Based on a Large Neighborhood of the Central Path , 1999, SIAM J. Optim..

[20]  J. Frédéric Bonnans,et al.  Perturbed path following predictor-corrector interior point algorithms , 1999 .

[21]  Raed Abu Zitar,et al.  Neural network approach to firm grip in the presence of small slips , 2001, J. Field Robotics.

[22]  Patrick Chabrand,et al.  Complementarity methods for multibody friction contact problems in finite deformations , 2001 .

[23]  Friedrich Pfeiffer,et al.  A Time‐Stepping Algorithm for Stiff Mechanical Systems with Unilateral Constraints , 2003 .

[24]  Antonio Tralli,et al.  Iterative LCP solvers for non‐local loading–unloading conditions , 2003 .

[25]  Mihai Anitescu,et al.  A fixed-point iteration approach for multibody dynamics with contact and small friction , 2004, Math. Program..

[26]  Tobias Welge-Luessen Modelling and Mechanical Design of Underactuated Robot Manipulators with Impact and Friction , 2004 .

[27]  C. Glocker,et al.  Optimality Conditions for Mechanical Impacts , 2004 .

[28]  B. He,et al.  A MODIFIED PROJECTION AND CONTRACTION METHOD FOR A CLASS OF LINEAR COMPLEMENTARITY PROBLEMS , 2006 .

[29]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.