In vivo evaluation of hydroxyapatite coatings of different crystallinities.

PURPOSE The influence of calcium phosphate (CaP) and hydroxyapatite (HA) crystallinity on bone-implant osseointegration is not well established. In this study, the effect of HA crystallinity and coating method on bone-implant osseointegration was investigated using a rat tibia model. MATERIALS AND METHODS HA coatings 1 to 5 microm thick were produced using a supersonic particle acceleration (SPA) technology. The HA crystallinities used for this study were weight ratios of 30%, 50%, 70%, and 90%. A total of 128 HA-coated implants were placed into the tibiae of 64 male Sprague-Dawley rats. Bone-implant interfaces were evaluated using histology and push-out strength testing at 3 and 9 weeks after implantation. RESULTS The 70% crystalline coatings exhibited significantly greater interfacial strength (5 implants/time point/treatment) than the 30%, 50%, and 90% crystalline coatings at 3 and 9 weeks following implantation. The implants with coatings of 70% crystallinity also had the greatest bone contact length. In addition, the HA coatings produced with SPA demonstrated greater interfacial strength and bone contact length than plasma-sprayed HA coatings (except for the HA coating with 30% crystallinity). DISCUSSION HA coatings of different crystallinities exhibited different dissolution and re-precipitation properties which may enhance early bone formation and bone bonding. CONCLUSIONS This study suggested that coating crystallinity and coating methods can influence the bone-implant interface.