Modeling and Performance Analysis of Metallic Plasmonic Nano-Antennas for Wireless Optical Communication in Nanonetworks

In this paper, metallic plasmonic nano-antennas are modeled and analyzed for wireless optical communication. More specifically, a unified mathematical framework is developed to investigate the performance in transmission and reception of metallic nano-dipole antennas. This framework takes into account the metal properties, i.e., its dynamic complex conductivity and permittivity; the propagation properties of surface plasmon polariton waves on the nano-antenna, i.e., their confinement factor and propagation length; and the antenna geometry, i.e., length and radius. The generated plasmonic current in reception and the total radiated power and efficiency in transmission are analytically derived by utilizing the framework. In addition to numerical results, the analytical models are validated by means of simulations with COMSOL Multi-physics. The developed framework will guide the design and development of novel nano-antennas suited for wireless optical communication.

[1]  J. S. Gomez-Diaz,et al.  Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets , 2012 .

[2]  Mahbub Hassan,et al.  Power Optimization in Nano Sensor Networks for Chemical Reactors , 2014, NANOCOM' 14.

[3]  Carsten Rockstuhl,et al.  Plasmonic nanowire antennas: experiment, simulation, and theory. , 2010, Nano letters.

[4]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[5]  Josep Miquel Jornet,et al.  On the feeding mechanisms for graphene-based THz plasmonic nano-antennas , 2015, 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO).

[6]  Ari Sihvola,et al.  Mixing formulas in time domain , 1998 .

[7]  Ian F. Akyildiz,et al.  Graphene-based Plasmonic Nano-Antenna for Terahertz Band Communication in Nanonetworks , 2013, IEEE Journal on Selected Areas in Communications.

[8]  R. Olmon,et al.  Antenna–load interactions at optical frequencies: impedance matching to quantum systems , 2012, Nanotechnology.

[9]  D. Cheng Field and wave electromagnetics , 1983 .

[10]  Marvin J. Weber,et al.  Handbook of Optical Materials , 2002 .

[11]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[12]  N. Peres,et al.  Optical conductivity of graphene in the visible region of the spectrum , 2008, 0803.1802.

[13]  J. Jornet,et al.  Intra-Body Optical Channel Modeling for In Vivo Wireless Nanosensor Networks , 2016, IEEE Transactions on NanoBioscience.

[14]  Eduard Alarcón,et al.  Time-Domain Analysis of Graphene-Based Miniaturized Antennas for Ultra-Short-Range Impulse Radio Communications , 2015, IEEE Transactions on Communications.

[15]  K. Vahala Optical microcavities , 2003, Nature.

[16]  J. Lourtioz Photonic crystals and metamaterials , 2008 .

[17]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[18]  Ian F. Akyildiz,et al.  Electromagnetic wireless nanosensor networks , 2010, Nano Commun. Networks.

[19]  Brendan Jennings,et al.  Performance Analysis of Plant Monitoring Nanosensor Networks at THz Frequencies , 2016, IEEE Internet of Things Journal.

[20]  Ahmad Mohammadi,et al.  Gold, Copper, Silver and Aluminum Nanoantennas to Enhance Spontaneous Emission , 2008, 0807.4082.

[21]  Henry Ehrenreich,et al.  Optical Properties of Noble Metals. II. , 1965 .

[22]  Josep Miquel Jornet,et al.  Metallic Plasmonic Nano-antenna for Wireless Optical Communication in Intra-body Nanonetworks , 2015, BODYNETS.

[23]  Q-Han Park,et al.  Optical antennas and plasmonics , 2009, 0901.2162.

[24]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[25]  Reuven Gordon,et al.  Vectorial method for calculating the Fresnel reflection of surface plasmon polaritons , 2006 .

[26]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[27]  Reuven Gordon,et al.  Reflection of cylindrical surface waves. , 2009, Optics express.

[28]  Y. Wang,et al.  Single-mode laser by parity-time symmetry breaking , 2014, Science.

[29]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.

[30]  Eduard Alarcón,et al.  Graphene-enabled wireless communication for massive multicore architectures , 2013, IEEE Communications Magazine.

[31]  A. Cabellos-Aparicio,et al.  Graphene-based nano-patch antenna for terahertz radiation , 2012 .

[32]  I. Akyildiz,et al.  Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[33]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.