Finite-Difference Methods in Climate Modeling

Some basic aspects of finite-difference methods in climate modeling are discussed. Emphasis is placed on comparisons of the dynamics of discrete systems with that of the original continuous system, including the problem of choosing vertical and horizontal grid structures and resolutions, and the problem of maintaining various integral constraints of physical importance.

[1]  Tatsushi Tokioka,et al.  Some Considerations on Vertical Differencing , 1978 .

[2]  Zavisa Janjic,et al.  Nonlinear Advection Schemes and Energy Cascade on Semi-Staggered Grids , 1984 .

[3]  A. Defant,et al.  Book Review: The atmosphere and the sea in motion. Scientific contributions to the Rossby Memorial Volume, (edited by BERT BOLIN, Stockholm University), Rockefeller Inst. Press, New York, in association with Oxford University Press, 1959. 509 Sieten mit vielen Abbildungen , 1960 .

[4]  Lewis F. Richardson,et al.  Weather Prediction by Numerical Process , 1922 .

[5]  A. Arakawa,et al.  Vertical Differencing of the Primitive Equations in Sigma Coordinates , 1983 .

[6]  J. G. Charney,et al.  The Use of the Primitive Equations of Motion in Numerical Prediction , 1955 .

[7]  Albert Cahn,et al.  AN INVESTIGATION OF THE FREE OSCILLATIONS OF A SIMPLE CURRENT SYSTEM , 1945 .

[8]  Warren M. Washington,et al.  NCAR global General Circulation Model of the atmosphere , 1967 .

[9]  J. Derome,et al.  Some Effects of the Upper Boundary Condition and Vertical Resolution on Modeling Forced Stationary Planetary Waves , 1977 .

[10]  N. Phillips,et al.  NUMERICAL INTEGRATION OF THE QUASI-GEOSTROPHIC EQUATIONS FOR BAROTROPIC AND SIMPLE BAROCLINIC FLOWS , 1953 .

[11]  Edward N. Lorenz,et al.  Available Potential Energy and the Maintenance of the General Circulation , 1955 .

[12]  Akio Arakawa,et al.  Integration of the Nondivergent Barotropic Vorticity Equation with AN Icosahedral-Hexagonal Grid for the SPHERE1 , 1968 .

[13]  Heinz-Otto Kreiss,et al.  Methods for the approximate solution of time dependent problems , 1973 .

[14]  F. Bretherton Critical layer instability in baroclinic flows , 1966 .

[15]  A. Kasahara Various Vertical Coordinate Systems Used for Numerical Weather Prediction , 1974 .

[16]  A. Arakawa Computational design for long-term numerical integration of the equations of fluid motion: two-dimen , 1997 .

[17]  N. Phillips,et al.  Numerical Weather Prediction in the Soviet Union , 1960 .

[18]  J. A. Spahr,et al.  A Study of the Sensitivity of Numerical Forecasts to an Upper Boundary in the Lower Stratosphere , 1982 .

[19]  David L. Williamson,et al.  A Description of the NCAR Global Circulation Models , 1977 .

[20]  N. A. Phillips,et al.  A Map Projection System Suitable for Large-scale Numerical Weather Prediction , 1957 .

[21]  R. Lindzen,et al.  OSCILLATIONS IN ATMOSPHERES WITH TOPS , 1968 .

[22]  A. Arakawa Design of the UCLA general circulation model , 1972 .

[23]  Douglas K. Lilly,et al.  ON THE COMPUTATIONAL STABILITY OF NUMERICAL SOLUTIONS OF TIME-DEPENDENT NON-LINEAR GEOPHYSICAL FLUID DYNAMICS PROBLEMS , 1965 .

[24]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[25]  A. Kasahara,et al.  General Circulation Experiments with a Six-Layer NCAR Model, Including Orography, Cloudiness and Surface Temperature Calculations , 1971 .

[26]  N. A. Phillips,et al.  A COORDINATE SYSTEM HAVING SOME SPECIAL ADVANTAGES FOR NUMERICAL FORECASTING , 1957 .

[27]  E. Lorenz Energy and Numerical Weather Prediction , 1960 .

[28]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[29]  C. Rossby,et al.  On the Mutual Adjustment of Pressure and Velocity Distributions in Certain Simple Current Systems, II , 1938 .

[30]  Yoshio Kurihara,et al.  Numerical Integration of the Primitive Equations on a Spherical Grid , 1965 .

[31]  G. J. Haltiner Numerical Prediction and Dynamic Meteorology , 1980 .

[32]  David L. Williamson,et al.  Integration of the barotropic vorticity equation on a spherical geodesic grid , 1968 .

[33]  J. Wallace,et al.  Reduction of systematic forecast errors in the ECMWF model through the introduction of an envelope orography , 1983 .

[34]  Ragnar Fjørtoft,et al.  On the Changes in the Spectral Distribution of Kinetic Energy for Twodimensional, Nondivergent Flow , 1953 .

[35]  Julius Chang,et al.  General circulation models of the atmosphere , 1977 .

[36]  A. Arakawa,et al.  Numerical methods used in atmospheric models , 1976 .

[37]  A. Simmons,et al.  An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates , 1981 .

[38]  Hajime Nakamura Dynamical Effects of Mountains on the General Circulation of the Atmosphere: I. Development of Finite-Difference Schemes Suitable for Incorporating Mountains , 1978 .

[39]  R. Sadourny The Dynamics of Finite-Difference Models of the Shallow-Water Equations , 1975 .

[40]  A. Hollingsworth,et al.  An internal symmetric computational instability , 1983 .

[41]  A. Arakawa,et al.  A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations , 1981 .

[42]  Energy‐preserving integrations of the primitive equations on the sphere , 1967 .

[43]  Akio Arakawa,et al.  Baroclinic Instability in Vertically Discrete Systems. , 1988 .