Parameter Estimation of a Class of Neural Systems with Limit Cycles
暂无分享,去创建一个
Xu Cai | Xuyang Lou | Baotong Cui | X. Lou | B. Cui | Xu Cai
[1] Yafeng Zhan,et al. The response of a linear monostable system and its application in parameters estimation for PSK signals , 2016 .
[2] Omiros Papaspiliopoulos,et al. Markov chain Monte Carlo approach to parameter estimation in the FitzHugh-Nagumo model. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[3] Ruifeng Ding,et al. Multi-innovation stochastic gradient algorithms for dual-rate sampled systems with preload nonlinearity , 2013, Appl. Math. Lett..
[4] Wolf Singer,et al. Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.
[5] Lennart Ljung,et al. Perspectives on system identification , 2010, Annu. Rev. Control..
[6] Feng Ding,et al. Performance analysis of multi-innovation gradient type identification methods , 2007, Autom..
[7] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[8] Minh Q. Phan,et al. Identification and Control of Mechanical Systems: System Identification , 2001 .
[9] Li-Hui Geng,et al. Parameter estimation of the FitzHugh-Nagumo model using noisy measurements for membrane potential. , 2012, Chaos.
[10] G. Buzsáki,et al. Neuronal Oscillations in Cortical Networks , 2004, Science.
[11] Joël Tabak,et al. Parameter Estimation Methods for Single Neuron Models , 2000, Journal of Computational Neuroscience.
[12] Domenico Guida,et al. A time-domain system identification numerical procedure for obtaining linear dynamical models of multibody mechanical systems , 2018 .
[13] Satish Iyengar,et al. Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data , 2008, Journal of Computational Neuroscience.
[14] M. Moonen,et al. A subspace algorithm for balanced state space system identification , 1993, IEEE Trans. Autom. Control..
[15] Feng Ding,et al. A recursive least squares parameter estimation algorithm for output nonlinear autoregressive systems using the input-output data filtering , 2017, J. Frankl. Inst..
[16] João Pedro Hespanha,et al. Event-based minimum-time control of oscillatory neuron models , 2009, Biological Cybernetics.
[17] Godpromesse Kenné,et al. Nonlinear systems time-varying parameter estimation: Application to induction motors , 2008 .
[18] Jianfeng Feng,et al. A Self-Organizing State-Space-Model Approach for Parameter Estimation in Hodgkin-Huxley-Type Models of Single Neurons , 2011, PLoS Comput. Biol..
[19] Domenico Guida,et al. System identification and experimental modal analysis of a frame structure , 2018 .
[20] Domenico Guida,et al. System Identification Algorithm for Computing the Modal Parameters of Linear Mechanical Systems , 2018 .
[21] Conor J. Houghton,et al. Parameter estimation of neuron models using in-vitro and in-vivo electrophysiological data , 2015, Front. Neuroinform..
[22] Feng Ding,et al. A multi-innovation state and parameter estimation algorithm for a state space system with d-step state-delay , 2017, Signal Process..
[23] F. Ding. Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling , 2013 .
[24] Andrea Arnold,et al. An approach to periodic, time-varying parameter estimation using nonlinear filtering , 2017, Inverse Problems.
[25] A. Concha,et al. Parameter Estimation of the FitzHugh–Nagumo Neuron Model Using Integrals Over Finite Time Periods , 2015 .
[26] Xin-Ping Guan,et al. Stochastic gradient with changing forgetting factor-based parameter identification for Wiener systems , 2014, Appl. Math. Lett..
[27] Jay Lee,et al. A Minimal-Sensing Framework for Monitoring Multistage Manufacturing Processes Using Product Quality Measurements , 2018 .