Parameter Estimation of a Class of Neural Systems with Limit Cycles

This work addresses parameter estimation of a class of neural systems with limit cycles. An identification model is formulated based on the discretized neural model. To estimate the parameter vector in the identification model, the recursive least-squares and stochastic gradient algorithms including their multi-innovation versions by introducing an innovation vector are proposed. The simulation results of the FitzHugh–Nagumo model indicate that the proposed algorithms perform according to the expected effectiveness.

[1]  Yafeng Zhan,et al.  The response of a linear monostable system and its application in parameters estimation for PSK signals , 2016 .

[2]  Omiros Papaspiliopoulos,et al.  Markov chain Monte Carlo approach to parameter estimation in the FitzHugh-Nagumo model. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Ruifeng Ding,et al.  Multi-innovation stochastic gradient algorithms for dual-rate sampled systems with preload nonlinearity , 2013, Appl. Math. Lett..

[4]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[5]  Lennart Ljung,et al.  Perspectives on system identification , 2010, Annu. Rev. Control..

[6]  Feng Ding,et al.  Performance analysis of multi-innovation gradient type identification methods , 2007, Autom..

[7]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[8]  Minh Q. Phan,et al.  Identification and Control of Mechanical Systems: System Identification , 2001 .

[9]  Li-Hui Geng,et al.  Parameter estimation of the FitzHugh-Nagumo model using noisy measurements for membrane potential. , 2012, Chaos.

[10]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[11]  Joël Tabak,et al.  Parameter Estimation Methods for Single Neuron Models , 2000, Journal of Computational Neuroscience.

[12]  Domenico Guida,et al.  A time-domain system identification numerical procedure for obtaining linear dynamical models of multibody mechanical systems , 2018 .

[13]  Satish Iyengar,et al.  Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data , 2008, Journal of Computational Neuroscience.

[14]  M. Moonen,et al.  A subspace algorithm for balanced state space system identification , 1993, IEEE Trans. Autom. Control..

[15]  Feng Ding,et al.  A recursive least squares parameter estimation algorithm for output nonlinear autoregressive systems using the input-output data filtering , 2017, J. Frankl. Inst..

[16]  João Pedro Hespanha,et al.  Event-based minimum-time control of oscillatory neuron models , 2009, Biological Cybernetics.

[17]  Godpromesse Kenné,et al.  Nonlinear systems time-varying parameter estimation: Application to induction motors , 2008 .

[18]  Jianfeng Feng,et al.  A Self-Organizing State-Space-Model Approach for Parameter Estimation in Hodgkin-Huxley-Type Models of Single Neurons , 2011, PLoS Comput. Biol..

[19]  Domenico Guida,et al.  System identification and experimental modal analysis of a frame structure , 2018 .

[20]  Domenico Guida,et al.  System Identification Algorithm for Computing the Modal Parameters of Linear Mechanical Systems , 2018 .

[21]  Conor J. Houghton,et al.  Parameter estimation of neuron models using in-vitro and in-vivo electrophysiological data , 2015, Front. Neuroinform..

[22]  Feng Ding,et al.  A multi-innovation state and parameter estimation algorithm for a state space system with d-step state-delay , 2017, Signal Process..

[23]  F. Ding Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling , 2013 .

[24]  Andrea Arnold,et al.  An approach to periodic, time-varying parameter estimation using nonlinear filtering , 2017, Inverse Problems.

[25]  A. Concha,et al.  Parameter Estimation of the FitzHugh–Nagumo Neuron Model Using Integrals Over Finite Time Periods , 2015 .

[26]  Xin-Ping Guan,et al.  Stochastic gradient with changing forgetting factor-based parameter identification for Wiener systems , 2014, Appl. Math. Lett..

[27]  Jay Lee,et al.  A Minimal-Sensing Framework for Monitoring Multistage Manufacturing Processes Using Product Quality Measurements , 2018 .