Countable Borel Equivalence Relations

This paper develops the foundations of the descriptive set theory of countable Borel equivalence relations on Polish spaces with particular emphasis on the study of hyper-finite, amenable, treeable and universal equivalence relations.

[1]  Robert J. Zimmer,et al.  Ergodic Theory and Semisimple Groups , 1984 .

[2]  R. Lyons,et al.  Amenability, Kazhdan’s property and percolation for trees, groups and equivalence relations , 1991 .

[3]  V. Varadarajan,et al.  Groups of automorphisms of Borel spaces , 1963 .

[4]  Su Gao The action of (2,ℤ) on the subsets of ℤ² , 2000 .

[5]  G. Hjorth,et al.  Conjugacy equivalence relation on subgroups , 2001 .

[6]  Alex Furman Orbit equivalence rigidity , 1999 .

[7]  W. Ambrose Representation of Ergodic Flows , 1941 .

[8]  P. Meyer,et al.  Théorie discrète du potentiel , 1983 .

[9]  Daniel E Cohen,et al.  Combinatorial Group Theory: BIBLIOGRAPHY , 1989 .

[10]  B. Weiss Descriptive Set Theory and Dynamical Systems: A Survey of Generic Dynamics , 2000 .

[11]  Pierre de la Harpe,et al.  La propriété (T) de Kazhdan pour les groupes localement compacts , 1989 .

[12]  R. Zimmer Hyperfinite factors and amenable ergodic actions , 1977 .

[13]  Simon Thomas,et al.  On the complexity of the isomorphism relation for fields of finite transcendence degree , 2001 .

[14]  Opérations de Hausdorff itérées et réunions croissantes de compacts , 1992, Fundamenta Mathematicae.

[15]  A. J. Kuntz Groups of Transformations without Finite Invariant Measures Have Strong Generators of Size 2 , 1974 .

[16]  A. Ostaszewski TOPOLOGY AND BOREL STRUCTURE , 1976 .

[17]  Greg Hjorth Around nonclassifiability for countable torsion free abelian groups , 1999 .

[18]  Alexander S. Kechris,et al.  Amenable versus hyperfinite Borel equivalence relations , 1993, Journal of Symbolic Logic.

[19]  Mirna Džamonja,et al.  CLASSIFICATION AND ORBIT EQUIVALENCE RELATIONS (Mathematical Surveys and Monographs 75) , 2001 .

[20]  Christophe Champetier,et al.  L’espace des groupes de type fini , 2000 .

[21]  Alexander S. Kechris Amenable Equivalence Relations and Turing Degrees , 1991, J. Symb. Log..

[22]  Damien Gaboriau Coût des relations d’équivalence et des groupes , 2000 .

[23]  Scot Adams,et al.  Trees and amenable equivalence relations , 1990, Ergodic Theory and Dynamical Systems.

[24]  Slawomir Solecki Actions of Non-Compact and Non-Locally Compact Polish Groups , 2000, J. Symb. Log..

[25]  G. Hardy The Theory of Numbers , 1922, Nature.

[26]  V. Golodets,et al.  On the conjugacy and isomorphism problems for stabilizers of Lie group actions , 1999, Ergodic Theory and Dynamical Systems.

[27]  Greg Hjorth,et al.  Borel Equivalence Relations and Classifications of Countable Models , 1996, Ann. Pure Appl. Log..

[28]  C. Nebbia Amenability and Kunze-Stein property for groups acting on a tree , 1988 .

[29]  Indecomposability of treed equivalence relations , 1988 .

[30]  A. Kechris Countable sections for locally compact group actions. II , 1994 .

[31]  Greg Hjorth,et al.  Borel Equivalence Relations Induced by Actions of the Symmetric Group , 1998, Ann. Pure Appl. Log..

[32]  Simon Thomas,et al.  Superrigidity and countable Borel equivalence relations , 2003, Ann. Pure Appl. Log..

[33]  R. H. Farrell Representation of invariant measures , 1962 .

[34]  S. Gao The action of SL(2, Z) on the subsets of Z^2 , 2001 .

[35]  Alexander S. Kechris,et al.  Linear algebraic groups and countable Borel equivalence relations , 2000 .

[36]  Nellie Clarke Brown Trees , 1896, Savage Dreams.

[37]  Greg Hjorth,et al.  Classification and Orbit Equivalence Relations , 1999 .

[38]  Benjamin Weiss,et al.  An amenable equivalence relation is generated by a single transformation , 1981, Ergodic Theory and Dynamical Systems.

[39]  Ralf Spatzier,et al.  KAZHDAN GROUPS, COCYCLES AND TREES , 1990 .

[40]  Alexander S. Kechris,et al.  Countable sections for locally compact group actions , 1992, Ergodic Theory and Dynamical Systems.

[41]  Generic dynamics and monotone complete *-algebras , 1986 .

[42]  A. Kechris Actions of Polish Groups and Classification Problems , 2003 .

[43]  U. Krengel Transformations without finite invariant measure have finite strong generators , 1970 .

[44]  R. Lyons Random Walks and Percolation on Trees , 1990 .

[45]  Alexander S. Kechris,et al.  On the Classification Problem for Rank 2 Torsion‐Free Abelian Groups , 2000 .

[46]  Simon Thomas,et al.  On the Complexity of the Isomorphism Relation for Finitely Generated Groups , 1998 .

[47]  Calvin C. Moore,et al.  Ergodic equivalence relations, cohomology, and von Neumann algebras. II , 1977 .

[48]  R. Dougherty,et al.  The structure of hy-per nite Borel equivalence relations , 1994 .

[49]  R. Dougherty,et al.  How Many Turing Degrees are There , 2000, math/0001173.

[50]  G. Hjorth,et al.  The complexity of the classification of Riemann surfaces and complex manifolds , 2000 .

[51]  Su Gao,et al.  On the classification of Polish metric spaces up to isometry , 2003 .

[52]  An equivalence relation that is not freely generated , 1988 .

[53]  D. Sullivan,et al.  Generic dynamics and monotone complete C*-algebras , 1986 .

[54]  J. Feldman,et al.  Orbit structure and countable sections for actions of continuous groups , 1978 .

[55]  Alexander S. Kechris,et al.  New Directions in Descriptive Set Theory , 1999, Bulletin of Symbolic Logic.