Countable Borel Equivalence Relations
暂无分享,去创建一个
[1] Robert J. Zimmer,et al. Ergodic Theory and Semisimple Groups , 1984 .
[2] R. Lyons,et al. Amenability, Kazhdan’s property and percolation for trees, groups and equivalence relations , 1991 .
[3] V. Varadarajan,et al. Groups of automorphisms of Borel spaces , 1963 .
[4] Su Gao. The action of (2,ℤ) on the subsets of ℤ² , 2000 .
[5] G. Hjorth,et al. Conjugacy equivalence relation on subgroups , 2001 .
[6] Alex Furman. Orbit equivalence rigidity , 1999 .
[7] W. Ambrose. Representation of Ergodic Flows , 1941 .
[8] P. Meyer,et al. Théorie discrète du potentiel , 1983 .
[9] Daniel E Cohen,et al. Combinatorial Group Theory: BIBLIOGRAPHY , 1989 .
[10] B. Weiss. Descriptive Set Theory and Dynamical Systems: A Survey of Generic Dynamics , 2000 .
[11] Pierre de la Harpe,et al. La propriété (T) de Kazhdan pour les groupes localement compacts , 1989 .
[12] R. Zimmer. Hyperfinite factors and amenable ergodic actions , 1977 .
[13] Simon Thomas,et al. On the complexity of the isomorphism relation for fields of finite transcendence degree , 2001 .
[14] Opérations de Hausdorff itérées et réunions croissantes de compacts , 1992, Fundamenta Mathematicae.
[15] A. J. Kuntz. Groups of Transformations without Finite Invariant Measures Have Strong Generators of Size 2 , 1974 .
[16] A. Ostaszewski. TOPOLOGY AND BOREL STRUCTURE , 1976 .
[17] Greg Hjorth. Around nonclassifiability for countable torsion free abelian groups , 1999 .
[18] Alexander S. Kechris,et al. Amenable versus hyperfinite Borel equivalence relations , 1993, Journal of Symbolic Logic.
[19] Mirna Džamonja,et al. CLASSIFICATION AND ORBIT EQUIVALENCE RELATIONS (Mathematical Surveys and Monographs 75) , 2001 .
[20] Christophe Champetier,et al. L’espace des groupes de type fini , 2000 .
[21] Alexander S. Kechris. Amenable Equivalence Relations and Turing Degrees , 1991, J. Symb. Log..
[22] Damien Gaboriau. Coût des relations d’équivalence et des groupes , 2000 .
[23] Scot Adams,et al. Trees and amenable equivalence relations , 1990, Ergodic Theory and Dynamical Systems.
[24] Slawomir Solecki. Actions of Non-Compact and Non-Locally Compact Polish Groups , 2000, J. Symb. Log..
[25] G. Hardy. The Theory of Numbers , 1922, Nature.
[26] V. Golodets,et al. On the conjugacy and isomorphism problems for stabilizers of Lie group actions , 1999, Ergodic Theory and Dynamical Systems.
[27] Greg Hjorth,et al. Borel Equivalence Relations and Classifications of Countable Models , 1996, Ann. Pure Appl. Log..
[28] C. Nebbia. Amenability and Kunze-Stein property for groups acting on a tree , 1988 .
[29] Indecomposability of treed equivalence relations , 1988 .
[30] A. Kechris. Countable sections for locally compact group actions. II , 1994 .
[31] Greg Hjorth,et al. Borel Equivalence Relations Induced by Actions of the Symmetric Group , 1998, Ann. Pure Appl. Log..
[32] Simon Thomas,et al. Superrigidity and countable Borel equivalence relations , 2003, Ann. Pure Appl. Log..
[33] R. H. Farrell. Representation of invariant measures , 1962 .
[34] S. Gao. The action of SL(2, Z) on the subsets of Z^2 , 2001 .
[35] Alexander S. Kechris,et al. Linear algebraic groups and countable Borel equivalence relations , 2000 .
[36] Nellie Clarke Brown. Trees , 1896, Savage Dreams.
[37] Greg Hjorth,et al. Classification and Orbit Equivalence Relations , 1999 .
[38] Benjamin Weiss,et al. An amenable equivalence relation is generated by a single transformation , 1981, Ergodic Theory and Dynamical Systems.
[39] Ralf Spatzier,et al. KAZHDAN GROUPS, COCYCLES AND TREES , 1990 .
[40] Alexander S. Kechris,et al. Countable sections for locally compact group actions , 1992, Ergodic Theory and Dynamical Systems.
[41] Generic dynamics and monotone complete *-algebras , 1986 .
[42] A. Kechris. Actions of Polish Groups and Classification Problems , 2003 .
[43] U. Krengel. Transformations without finite invariant measure have finite strong generators , 1970 .
[44] R. Lyons. Random Walks and Percolation on Trees , 1990 .
[45] Alexander S. Kechris,et al. On the Classification Problem for Rank 2 Torsion‐Free Abelian Groups , 2000 .
[46] Simon Thomas,et al. On the Complexity of the Isomorphism Relation for Finitely Generated Groups , 1998 .
[47] Calvin C. Moore,et al. Ergodic equivalence relations, cohomology, and von Neumann algebras. II , 1977 .
[48] R. Dougherty,et al. The structure of hy-per nite Borel equivalence relations , 1994 .
[49] R. Dougherty,et al. How Many Turing Degrees are There , 2000, math/0001173.
[50] G. Hjorth,et al. The complexity of the classification of Riemann surfaces and complex manifolds , 2000 .
[51] Su Gao,et al. On the classification of Polish metric spaces up to isometry , 2003 .
[52] An equivalence relation that is not freely generated , 1988 .
[53] D. Sullivan,et al. Generic dynamics and monotone complete C*-algebras , 1986 .
[54] J. Feldman,et al. Orbit structure and countable sections for actions of continuous groups , 1978 .
[55] Alexander S. Kechris,et al. New Directions in Descriptive Set Theory , 1999, Bulletin of Symbolic Logic.