Crystal structure of Hsp33 chaperone (TM1394) from Thermotoga maritima at 2.20 Å resolution

Lukasz Jaroszewski, Robert Schwarzenbacher, Daniel McMullan, Polat Abdubek, Sanjay Agarwalla, Eileen Ambing, Herbert Axelrod, Tanya Biorac, Jaume M. Canaves, Hsiu-Ju Chiu, Ashley M. Deacon, Michael DiDonato, Marc-André Elsliger, Adam Godzik, Carina Grittini, Slawomir K. Grzechnik, Joanna Hale, Eric Hampton, Gye Won Han, Justin Haugen, Michael Hornsby, Heath E. Klock, Eric Koesema, Andreas Kreusch, Peter Kuhn, Scott A. Lesley, Mitchell D. Miller, Kin Moy, Edward Nigoghossian, Jessica Paulsen, Kevin Quijano, Ron Reyes, Chris Rife, Glen Spraggon, Raymond C. Stevens, Henry van den Bedem, Jeff Velasquez, Juli Vincent, Aprilfawn White, Guenter Wolf, Qingping Xu, Keith O. Hodgson, John Wooley, and Ian A. Wilson* The Joint Center for Structural Genomics Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, California The University of California, San Diego, La Jolla, California The Genomics Institute of the Novartis Research Foundation, San Diego, California The Scripps Research Institute, La Jolla, California

[1]  Zbigniew Dauter,et al.  The crystal structure of the reduced, Zn2+-bound form of the B. subtilis Hsp33 chaperone and its implications for the activation mechanism. , 2004, Structure.

[2]  Earl W. Cornell,et al.  An approach to rapid protein crystallization using nanodroplets , 2002 .

[3]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.

[4]  H. Dyson,et al.  Activation of the Redox-regulated Chaperone Hsp33 by Domain Unfolding* , 2004, Journal of Biological Chemistry.

[5]  G Vriend,et al.  WHAT IF: a molecular modeling and drug design program. , 1990, Journal of molecular graphics.

[6]  U. Jakob,et al.  The 2.2 A crystal structure of Hsp33: a heat shock protein with redox-regulated chaperone activity. , 2001, Structure.

[7]  D. Jeong,et al.  Crystal structure of proteolytic fragments of the redox-sensitive Hsp33 with constitutive chaperone activity , 2001, Nature Structural Biology.

[8]  U. Jakob,et al.  Chaperone Activity with a Redox Switch , 1999, Cell.

[9]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[10]  B. Matthews Solvent content of protein crystals. , 1968, Journal of molecular biology.

[11]  David S. Moss,et al.  Error Estimates of Protein Structure Coordinates and Deviations from Standard Geometry by Full-Matrix Refinement of γB- and βB2-Crystallin , 1998 .

[12]  Peter Kuhn,et al.  Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. , 2002, Journal of synchrotron radiation.

[13]  C. Sander,et al.  Dali: a network tool for protein structure comparison. , 1995, Trends in biochemical sciences.

[14]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[15]  Adam Godzik,et al.  Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline , 2002, Proceedings of the National Academy of Sciences of the United States of America.