Relativistic Krori‐Barua Compact Stars in f(R,T)$f(R,T)$ Gravity

This work aims to investigate the behaviour of compact stars in the background of f(R,T)$f(R, T)$ theory of gravity. For current work, we consider the Krori‐Barua metric potential i.e., ν(r)=Br2+C$\nu (r)= Br^2+C$ and λ(r)=Ar2$\lambda (r)= Ar^2$ , where, A,B$A, B$ and C are constants. We use matching conditions of spherically symmetric space‐time with Schwarzschild solution as an exterior geometry and examine the physical behaviour of stellar structure by assuming the exponential type f(R,T)$f(R, T)$ gravity model. In the present analysis, we discuss the graphical behaviour of energy density, radial pressure, tangential pressure, equation of state parameters, anisotropy and stability analysis respectively. Furthermore, an equilibrium condition can be visualized through the modified Tolman‐Oppenheimer‐Volkov equation. Some extra features of compact stars i.e. mass‐radius function, compactness factor and surface redshift have also been investigated. Conclusively, all the results in current study validate the existence of compact stars under exponential f(R,T)$f(R, T)$ gravity model.

[1]  Adnan Malik,et al.  A study of cylindrically symmetric solutions in $$f(R, \phi , X)$$ theory of gravity , 2022, The European Physical Journal C.

[2]  F. Mofarreh,et al.  Traversable wormhole solutions in the f (R) theories of gravity under the Karmarkar condition , 2022 .

[3]  A. Malik A study of Levi-Civita’s cylindrical solutions in $$f(R,\phi )$$ gravity , 2021, The European Physical Journal Plus.

[4]  R. Reis,et al.  Neutron stars in f(R,T) gravity with conserved energy-momentum tensor: Hydrostatic equilibrium and asteroseismology , 2021, 2105.07573.

[5]  A. Usman,et al.  Embedded class-I solution of compact stars in f(R) gravity with Karmarkar condition , 2021, 2105.02731.

[6]  M. Zubair,et al.  Relativistic Stellar Model in f(R,T) Gravity Using Karmarkar Condition , 2021 .

[7]  S. Ray,et al.  Anisotropic charged strange stars in Krori-Barua spacetime under f(R,T) gravity , 2021 .

[8]  A. Rashid,et al.  Bardeen compact stars in modified f(R) gravity , 2021, Chinese Journal of Physics.

[9]  M. Ilyas Compact stars with variable cosmological constant in $f(\mathcal{R,T})$ gravity , 2020 .

[10]  M. Malheiro,et al.  Neutron stars in f(ℛ,T) gravity using realistic equations of state in the light of massive pulsars and GW170817 , 2020, Journal of Cosmology and Astroparticle Physics.

[11]  P. Bhar Charged strange star with Krori–Barua potential in f(R, T) gravity admitting Chaplygin equation of state , 2020, The European Physical Journal Plus.

[12]  Muhammad Zubair,et al.  Physically Acceptable Embedded Class-I Compact Stars in Modified Gravity with Karmarkar Condition , 2020, Symmetry.

[13]  M. Shamir,et al.  Investigating cosmology with equation of state , 2019, Canadian Journal of Physics.

[14]  M. Shamir,et al.  Behavior of Anisotropic Compact Stars in f(R, ϕ) Gravity , 2019, Communications in Theoretical Physics.

[15]  M. Sharif,et al.  Anisotropic quark stars in f(R, T) gravity , 2018, The European Physical Journal C.

[16]  V. Oikonomou,et al.  Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution , 2017, 1705.11098.

[17]  Amitabh Das,et al.  Compact stars in $$f(R,\mathcal {T})$$f(R,T) gravity , 2016 .

[18]  M. Sharif,et al.  Physical behavior of anisotropic compact stars in f(R, T, RμνTμν) gravity , 2016 .

[19]  M. Malheiro,et al.  Stellar equilibrium configurations of compact stars in f(R,T) theory of gravity , 2015, 1511.06282.

[20]  P. Bhar A new hybrid star model in Krori-Barua spacetime , 2015 .

[21]  M. Dey,et al.  Strange star equation of state fits the refined mass measurement of 12 pulsars and predicts their radii , 2013, 1303.1956.

[22]  S. Ray,et al.  Strange stars in Krori–Barua space-time , 2011, 1108.6125.

[23]  Sergei D. Odintsov,et al.  Unified cosmic history in modified gravity: From F ( R ) theory to Lorentz non-invariant models , 2010, 1011.0544.

[24]  H. Andréasson Mathematical Sciences , 1983, The British Journal for the History of Science.

[25]  C. Boehmer,et al.  Bounds on the basic physical parameters for anisotropic compact general relativistic objects , 2006, gr-qc/0609061.

[26]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[27]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[28]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[29]  T. Harko,et al.  Anisotropic stars in general relativity , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[31]  H. Buchdahl Non-Linear Lagrangians and Cosmological Theory , 1970 .