An introduction to uncertainty quantification for kinetic equations and related problems

We overview some recent results in the field of uncertainty quantification for kinetic equations and related problems with random inputs. Uncertainties may be due to various reasons, such as lack of knowledge on the microscopic interaction details or incomplete information at the boundaries or on the initial data. These uncertainties contribute to the curse of dimensionality and the development of efficient numerical methods is a challenge. After a brief introduction on the main numerical techniques for uncertainty quantification in partial differential equations, we focus our survey on some of the recent progress on multi-fidelity methods and stochastic Galerkin methods for kinetic equations.

[1]  Uri M. Ascher,et al.  Stochastic Algorithms for Inverse Problems Involving PDEs and many Measurements , 2014, SIAM J. Sci. Comput..

[2]  Liu Liu A stochastic asymptotic-preserving scheme for the bipolar semiconductor Boltzmann-Poisson system with random inputs and diffusive scalings , 2019, J. Comput. Phys..

[3]  Benjamin Peherstorfer,et al.  Convergence analysis of multifidelity Monte Carlo estimation , 2018, Numerische Mathematik.

[4]  Shi Jin,et al.  A Study of Hyperbolicity of Kinetic Stochastic Galerkin System for the Isentropic Euler Equations with Uncertainty , 2019, Chinese Annals of Mathematics, Series B.

[5]  Jürgen Dix,et al.  EDs , 2021, Encyclopedia of Evolutionary Psychological Science.

[6]  Lorenzo Pareschi,et al.  Monte Carlo stochastic Galerkin methods for the Boltzmann equation with uncertainties: space-homogeneous case , 2020, J. Comput. Phys..

[7]  Giacomo Dimarco,et al.  Multiscale Variance Reduction Methods Based on Multiple Control Variates for Kinetic Equations with Uncertainties , 2018, Multiscale Model. Simul..

[8]  Bruno Després,et al.  Robust Uncertainty Propagation in Systems of Conservation Laws with the Entropy Closure Method , 2013, Uncertainty Quantification in Computational Fluid Dynamics.

[9]  M. Zanella,et al.  Particle Based gPC Methods for Mean-Field Models of Swarming with Uncertainty , 2017, Communications in Computational Physics.

[10]  Jingwei Hu,et al.  A Stochastic Galerkin Method for the Fokker–Planck–Landau Equation with Random Uncertainties , 2016 .

[11]  LIU LIU,et al.  Hypocoercivity Based Sensitivity Analysis and Spectral Convergence of the Stochastic Galerkin Approximation to Collisional Kinetic Equations with Multiple Scales and Random Inputs , 2018, Multiscale Model. Simul..

[12]  Dongbin Xiu,et al.  Multi-fidelity stochastic collocation method for computation of statistical moments , 2017, J. Comput. Phys..

[13]  A. Bobylev Exact solutions of the Boltzmann equation , 1975 .

[14]  Gaël Poëtte,et al.  Spectral convergence of the generalized Polynomial Chaos reduced model obtained from the uncertain linear Boltzmann equation , 2020, Math. Comput. Simul..

[15]  Esther S. Daus,et al.  Spectral convergence of the stochastic galerkin approximation to the boltzmann equation with multiple scales and large random perturbation in the collision kernel , 2018, Kinetic & Related Models.

[16]  Giacomo Dimarco,et al.  Uncertainty Quantification for Kinetic Models in Socio–Economic and Life Sciences , 2017, 1706.07500.

[17]  Gianluca Iaccarino,et al.  A low-rank control variate for multilevel Monte Carlo simulation of high-dimensional uncertain systems , 2016, J. Comput. Phys..

[18]  Michel Loève,et al.  Probability Theory I , 1977 .

[19]  Shi Jin,et al.  A stochastic Galerkin method for the Boltzmann equation with uncertainty , 2016, J. Comput. Phys..

[20]  Michael B. Giles Multilevel Monte Carlo methods , 2015, Acta Numerica.

[21]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[22]  Jonas Sukys,et al.  Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions , 2012, J. Comput. Phys..

[23]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[24]  Lorenzo Pareschi,et al.  Structure Preserving Schemes for Nonlinear Fokker–Planck Equations and Applications , 2017, Journal of Scientific Computing.

[25]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[26]  Lorenzo Pareschi,et al.  Modeling and Computational Methods for Kinetic Equations , 2012 .

[27]  Lorenzo Pareschi,et al.  Reviews , 2014 .

[28]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[29]  Giacomo Dimarco,et al.  Numerical methods for kinetic equations* , 2014, Acta Numerica.

[30]  Pietro Santagati,et al.  Convergence of a Semi-Lagrangian Scheme for the BGK Model of the Boltzmann Equation , 2009, SIAM J. Numer. Anal..

[31]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[32]  Clemens Heitzinger,et al.  Existence, Uniqueness, and a Comparison of Nonintrusive Methods for the Stochastic Nonlinear Poisson-Boltzmann Equation , 2018, SIAM/ASA J. Uncertain. Quantification.

[33]  Giuseppe Toscani,et al.  Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation , 1999 .

[34]  Benjamin Peherstorfer,et al.  Optimal Model Management for Multifidelity Monte Carlo Estimation , 2016, SIAM J. Sci. Comput..

[35]  Lorenzo Pareschi,et al.  Binary Interaction Algorithms for the Simulation of Flocking and Swarming Dynamics , 2012, Multiscale Model. Simul..

[36]  Jan Nordström,et al.  Polynomial Chaos Methods for Hyperbolic Partial Differential Equations: Numerical Techniques for Fluid Dynamics Problems in the Presence of Uncertainties , 2015 .

[37]  Jingwei Hu,et al.  On stochastic Galerkin approximation of the nonlinear Boltzmann equation with uncertainty in the fluid regime , 2019, J. Comput. Phys..

[38]  CH' , 2018, Dictionary of Upriver Halkomelem.

[39]  James Michael MacFarlane Existence , 2020, Transhumanism as a New Social Movement.

[40]  Birkhauser Modeling and Computational Methods for Kinetic Equations , 2004 .

[41]  Shi Jin,et al.  The Vlasov-Poisson-Fokker-Planck System with Uncertainty and a One-dimensional Asymptotic Preserving Method , 2017, Multiscale Model. Simul..

[42]  Giuseppe Toscani,et al.  Sharp Entropy Dissipation Bounds and Explicit Rate of Trend to Equilibrium for the Spatially Homogeneous Boltzmann Equation , 1999 .

[43]  P. Alam ‘K’ , 2021, Composites Engineering.

[44]  Michael B. Giles,et al.  Multilevel Monte Carlo methods , 2013, Acta Numerica.

[45]  Lorenzo Pareschi,et al.  Fast algorithms for computing the Boltzmann collision operator , 2006, Math. Comput..

[46]  Liu Liu,et al.  An Asymptotic-Preserving Stochastic Galerkin Method for the Semiconductor Boltzmann Equation with Random Inputs and Diffusive Scalings , 2017, Multiscale Model. Simul..

[47]  Shi Jin,et al.  A High Order Stochastic Asymptotic Preserving Scheme for Chemotaxis Kinetic Models with Random Inputs , 2017, Multiscale Model. Simul..

[48]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[49]  Error estimate of a bi-fidelity method for kinetic equations with random parameters and multiple scales , 2019, ArXiv.

[50]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[51]  Shi Jin,et al.  Efficient Stochastic Asymptotic-Preserving Implicit-Explicit Methods for Transport Equations with Diffusive Scalings and Random Inputs , 2018, SIAM J. Sci. Comput..

[52]  Guannan Zhang,et al.  Stochastic finite element methods for partial differential equations with random input data* , 2014, Acta Numerica.

[53]  Giacomo Dimarco,et al.  Multi-scale control variate methods for uncertainty quantification in kinetic equations , 2018, J. Comput. Phys..

[54]  Lorenzo Pareschi,et al.  An introduction to Monte Carlo method for the Boltzmann equation , 2001 .

[55]  Tai-Ping Liu,et al.  Boltzmann Equation: Micro-Macro Decompositions and Positivity of Shock Profiles , 2004 .

[56]  Bruno Després,et al.  Uncertainty Propagation; Intrusive Kinetic Formulations of Scalar Conservation Laws , 2016, SIAM/ASA J. Uncertain. Quantification.

[57]  Shi Jin,et al.  Hypocoercivity and Uniform Regularity for the Vlasov-Poisson-Fokker-Planck System with Uncertainty and Multiple Scales , 2018, SIAM J. Math. Anal..

[58]  Bruno Després,et al.  Uncertainty quantification for systems of conservation laws , 2009, J. Comput. Phys..

[59]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.

[60]  Xueyu Zhu,et al.  A bi-fidelity method for the multiscale Boltzmann equation with random parameters , 2019, J. Comput. Phys..

[61]  Mattia Zanella,et al.  Monte Carlo gPC Methods for Diffusive Kinetic Flocking Models with Uncertainties , 2019, Vietnam Journal of Mathematics.

[62]  SHI JIN THE VLASOV–POISSON–FOKKER–PLANCK SYSTEM WITH UNCERTAINTY AND A ONE-DIMENSIONAL ASYMPTOTIC PRESERVING METHOD∗ , 2017 .

[63]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[64]  Jingwei Hu,et al.  A Stochastic Galerkin Method for the Boltzmann Equation with Multi-Dimensional Random Inputs Using Sparse Wavelet Bases , 2017 .

[65]  Gaël Poëtte,et al.  A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation , 2019, J. Comput. Phys..

[66]  Erwan Faou,et al.  Analysis of an Asymptotic Preserving Scheme for Stochastic Linear Kinetic Equations in the Diffusion Limit , 2019, SIAM/ASA J. Uncertain. Quantification.

[67]  Lorenzo Pareschi,et al.  Uncertainty Quantification in Control Problems for Flocking Models , 2015, 1503.00548.

[68]  Lexing Ying,et al.  An Entropic Fourier Method for the Boltzmann Equation , 2017, SIAM J. Sci. Comput..

[69]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[70]  Li Wang,et al.  Uniform Regularity for Linear Kinetic Equations with Random Input Based on Hypocoercivity , 2016, SIAM/ASA J. Uncertain. Quantification.

[71]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..