Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

[1]  Qiyuan He,et al.  Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. , 2012, Small.

[2]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[3]  Zhiyuan Zeng,et al.  An effective method for the fabrication of few-layer-thick inorganic nanosheets. , 2012, Angewandte Chemie.

[4]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[5]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[6]  Zhiyuan Zeng,et al.  Electrochemically reduced single-layer MoS₂ nanosheets: characterization, properties, and sensing applications. , 2012, Small.

[7]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[8]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[9]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[10]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[11]  J. Coleman,et al.  Preparation of High Concentration Dispersions of Exfoliated MoS2 with Increased Flake Size , 2012 .

[12]  G. Steele,et al.  Laser-thinning of MoS₂: on demand generation of a single-layer semiconductor. , 2012, Nano letters.

[13]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[14]  Bin Liu,et al.  Hysteresis in single-layer MoS2 field effect transistors. , 2012, ACS nano.

[15]  Jonathan N. Coleman,et al.  Correction to “Role of Solubility Parameters in Understanding the Steric Stabilization of Exfoliated Two-Dimensional Nanosheets by Adsorbed Polymers” , 2012 .

[16]  C. Dimitrakopoulos,et al.  State-of-the-art graphene high-frequency electronics. , 2012, Nano letters.

[17]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[18]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[19]  Jun Dai,et al.  Giant Moisture Responsiveness of VS2 Ultrathin Nanosheets for Novel Touchless Positioning Interface , 2012, Advanced materials.

[20]  Can Ataca,et al.  Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure , 2012 .

[21]  Bin Yu,et al.  Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell , 2012 .

[22]  Mustafa Lotya,et al.  Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersability of Exfoliated Nanosheets Varies Only Weakly between Compounds /v Sol (mol/ml) Characterisation of Dispersions , 2022 .

[23]  Gang Lu,et al.  Optical identification of single- and few-layer MoS₂ sheets. , 2012, Small.

[24]  Bin Wang,et al.  Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment , 2012, Nature Communications.

[25]  K. Jacobsen,et al.  Phonon-limited mobility inn-type single-layer MoS2from first principles , 2012 .

[26]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[27]  Yu‐Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[28]  H. Atwater,et al.  Photonic design principles for ultrahigh-efficiency photovoltaics. , 2012, Nature materials.

[29]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[30]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[31]  G. Dambrine,et al.  Flexible gigahertz transistors derived from solution-based single-layer graphene. , 2012, Nano letters.

[32]  Z. Yin,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[33]  V. May,et al.  Photoinduced switching of the current through a single molecule: effects of surface plasmon excitations of the leads. , 2012, Nano letters.

[34]  Minoru Osada,et al.  Two‐Dimensional Dielectric Nanosheets: Novel Nanoelectronics From Nanocrystal Building Blocks , 2012, Advanced materials.

[35]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[36]  Kourosh Kalantar-Zadeh,et al.  Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method. , 2012, Nanoscale.

[37]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[38]  I. Grigorieva,et al.  Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes , 2011, Science.

[39]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[40]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[41]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[42]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[43]  Hao‐Li Zhang,et al.  A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. , 2011, Angewandte Chemie.

[44]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[45]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[46]  J. Brivio,et al.  Ripples and layers in ultrathin MoS2 membranes. , 2011, Nano letters.

[47]  Yingchun Cheng,et al.  Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors , 2011 .

[48]  L. Wirtz,et al.  Phonons in single-layer and few-layer MoS2 , 2011 .

[49]  C N R Rao,et al.  Graphene analogues of layered metal selenides. , 2011, Dalton transactions.

[50]  Ho-Cheol Kim,et al.  Abundant non-toxic materials for thin film solar cells: Alternative to conventional materials , 2011 .

[51]  J. Coleman,et al.  Electrical Characteristics of Molybdenum Disulfide Flakes Produced by Liquid Exfoliation , 2011, Advanced materials.

[52]  Mustafa Lotya,et al.  Large‐Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions , 2011, Advanced materials.

[53]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[54]  Qing Hua Wang,et al.  Bi- and trilayer graphene solutions. , 2011, Nature nanotechnology.

[55]  Jing Guo,et al.  Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors , 2011, IEEE Transactions on Electron Devices.

[56]  C. Dimitrakopoulos,et al.  Wafer-Scale Graphene Integrated Circuit , 2011, Science.

[57]  Weihua Tang,et al.  First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers , 2011 .

[58]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[59]  Luis A. Agapito,et al.  Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors , 2011, Nanotechnology.

[60]  F. Guinea,et al.  Dirac cones reshaped by interaction effects in suspended graphene (vol 7, pg 701, 2011) , 2011, 1104.1396.

[61]  F. Xia,et al.  High-frequency, scaled graphene transistors on diamond-like carbon , 2011, Nature.

[62]  K. Novoselov,et al.  Micrometer-scale ballistic transport in encapsulated graphene at room temperature. , 2011, Nano letters.

[63]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[64]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[65]  B. Radisavljevic,et al.  Visibility of dichalcogenide nanolayers , 2010, Nanotechnology.

[66]  M. Strano,et al.  Synthesis of Atomically Thin WO3 Sheets from Hydrated Tungsten Trioxide. , 2010 .

[67]  D. Jena,et al.  Effect of high- κ gate dielectrics on charge transport in graphene-based field effect transistors , 2010 .

[68]  M. Strano,et al.  Synthesis of Atomically Thin WO3 Sheets from Hydrated Tungsten Trioxide , 2010 .

[69]  F. Guinea,et al.  Limits on charge carrier mobility in suspended graphene due to flexural phonons. , 2010, Physical review letters.

[70]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[71]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[72]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[73]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[74]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[75]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[76]  B. Hammer,et al.  Bandgap opening in graphene induced by patterned hydrogen adsorption. , 2010, Nature materials.

[77]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[78]  G. Eda,et al.  Blue Photoluminescence from Chemically Derived Graphene Oxide , 2009, Advanced materials.

[79]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[80]  K. Novoselov,et al.  Making graphene luminescent by oxygen plasma treatment. , 2009, ACS nano.

[81]  Christian Kisielowski,et al.  Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy , 2009 .

[82]  A. Green,et al.  Solution phase production of graphene with controlled thickness via density differentiation. , 2009, Nano letters.

[83]  P. Avouris,et al.  Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene , 2009, 0908.0749.

[84]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[85]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[86]  Yuyuan Tian,et al.  Dielectric screening enhanced performance in graphene FET. , 2009, Nano letters.

[87]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[88]  M. Osada,et al.  Exfoliated oxide nanosheets: new solution to nanoelectronics , 2009 .

[89]  B. H. Weiller,et al.  Practical chemical sensors from chemically derived graphene. , 2009, ACS nano.

[90]  S. Lebègue,et al.  Electronic structure of two-dimensional crystals from ab-initio theory , 2009, 0901.0440.

[91]  N. Kybert,et al.  Intrinsic response of graphene vapor sensors. , 2008, Nano letters.

[92]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[93]  L. Forró,et al.  From Mott state to superconductivity in 1T-TaS2. , 2008, Nature materials.

[94]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[95]  W. D. de Heer,et al.  The growth and morphology of epitaxial multilayer graphene , 2008 .

[96]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[97]  Phaedon Avouris,et al.  Carbon-nanotube photonics and optoelectronics , 2008 .

[98]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[99]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[100]  Jannik C. Meyer,et al.  The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes , 2008 .

[101]  Zvonko G. Vranesic,et al.  Fundamentals of Digital Logic with VHDL Design , 2008 .

[102]  H. Dai,et al.  Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors , 2008, Science.

[103]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[104]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO2. , 2007, Nature nanotechnology.

[105]  E. H. Hwang,et al.  Scattering mechanisms and Boltzmann transport in graphene , 2007, 0708.0404.

[106]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[107]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO 2 , 2008 .

[108]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[109]  G. Galli,et al.  Electronic properties of MoS2 nanoparticles , 2007 .

[110]  Wang Yao,et al.  Valley-contrasting physics in graphene: magnetic moment and topological transport. , 2007, Physical review letters.

[111]  G. Frey,et al.  Self-assembled lamellar MoS2, SnS2 and SiO2 semiconducting polymer nanocomposites , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[112]  D. Jena,et al.  Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. , 2007, Physical review letters.

[113]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[114]  Michael S. Fuhrer,et al.  Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides , 2007 .

[115]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[116]  S. Sarma,et al.  Carrier transport in two-dimensional graphene layers. , 2006, Physical review letters.

[117]  C. Beenakker,et al.  Valley filter and valley valve in graphene , 2006, cond-mat/0608533.

[118]  Salvador Ordóñez,et al.  Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites. , 2007, Journal of colloid and interface science.

[119]  Garry Rumbles,et al.  Excitons in nanoscale systems , 2006, Nature materials.

[120]  H. Tributsch,et al.  Photosensitization of nanostructured TiO2 with WS2 quantum sheets. , 2006, The journal of physical chemistry. B.

[121]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[122]  J. Seiber Status and Prospects , 2005 .

[123]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[124]  Jiaguo Yu,et al.  Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[125]  Jean-Pierre Colinge,et al.  Multiple-gate SOI MOSFETs , 2004 .

[126]  V. Podzorov,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004, cond-mat/0401243.

[127]  Hagai Cohen,et al.  Solution-processed anodes from layer-structure materials for high-efficiency polymer light-emitting diodes. , 2003, Journal of the American Chemical Society.

[128]  Richard H. Friend,et al.  Inorganic solution-processed hole-injecting and electron-blocking layers in polymer light-emitting diodes , 2002 .

[129]  R. Péchou,et al.  Light emission from spectral analysis of Au/MoS2 nanocontacts stimulated by scanning tunneling microscopy , 2002 .

[130]  A. Nozik Quantum dot solar cells , 2002 .

[131]  E. D. Crozier,et al.  Structures of exfoliated single layers of WS 2 , MoS 2 , and MoSe 2 in aqueous suspension , 2002 .

[132]  E. Benavente,et al.  Intercalation chemistry of molybdenum disulfide , 2002 .

[133]  J. Nørskov,et al.  One-dimensional metallic edge states in MoS2. , 2001, Physical review letters.

[134]  Weichao Yu,et al.  Hydrothermal Synthesis and Characterization of Single-Molecular-Layer MoS2 and MoSe2 , 2001 .

[135]  P. Krüger,et al.  Band structure of MoS 2 , MoSe 2 , and α − MoTe 2 : Angle-resolved photoelectron spectroscopy and ab initio calculations , 2001, cond-mat/0107541.

[136]  Weichao Yu,et al.  Hydrothermal Synthesis of MoS2 and Its Pressure-Related Crystallization , 2001 .

[137]  A. H. Castro Neto Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides. , 2001, Physical review letters.

[138]  Ron Dagani,et al.  CARBON-BASED ELECTRONICS , 1999 .

[139]  M. Kanatzidis,et al.  Exfoliated-Restacked Phase of WS2. , 1997 .

[140]  J. Bernède,et al.  MS2 (M = W, Mo) photosensitive thin films for solar cells , 1997 .

[141]  M. Kanatzidis,et al.  Exfoliated-Restacked Phase of WS2 , 1997 .

[142]  M. Kanatzidis,et al.  Toward Pillared Layered Metal Sulfides. Intercalation of the Chalcogenide Clusters Co6Q8(PR3)6 (Q = S, Se, and Te and R = Alkyl) into MoS2 , 1996 .

[143]  Kobayashi,et al.  Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces. , 1995, Physical review. B, Condensed matter.

[144]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[145]  Bruce A. Parkinson,et al.  Work Function and Photothreshold of Layered Metal Dichalcogenides , 1994 .

[146]  M. Asif Khan,et al.  High electron mobility transistor based on a GaN‐AlxGa1−xN heterojunction , 1993 .

[147]  A. D. Yoffe,et al.  Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems , 1993 .

[148]  M. Kanatzidis,et al.  Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2 , 1993 .

[149]  C. Julien,et al.  Lattice dynamics of lithium intercalated MoS2 , 1991 .

[150]  Risto M. Nieminen,et al.  Electronic Properties of Two-Dimensional Systems , 1988 .

[151]  H. Sakaki,et al.  Interface roughness scattering in GaAs/AlAs quantum wells , 1987 .

[152]  Haas,et al.  Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. , 1987, Physical review. B, Condensed matter.

[153]  Richard H. Friend,et al.  Electronic properties of intercalation complexes of the transition metal dichalcogenides , 1987 .

[154]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[155]  T. W. Halstead,et al.  Status and Prospects , 1984 .

[156]  S. Chandra,et al.  Electrodeposited semiconducting molybdenum selenide films. II. Optical, electrical, electrochemical and photoelectrochemical solar cell studies , 1984 .

[157]  B. Ridley The electron-phonon interaction in quasi-two-dimensional semiconductor quantum-well structures , 1982 .

[158]  B. Parkinson,et al.  Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides , 1982 .

[159]  W. Y. Liang,et al.  The reflectivity spectra of some group VA transition metal dichalcogenides , 1975 .

[160]  M. Dines Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides , 1975 .

[161]  J. Wilson,et al.  Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides , 1975 .

[162]  L. Mattheiss Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. , 1973 .

[163]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[164]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[165]  R. Fivaz,et al.  Mobility of Charge Carriers in Semiconducting Layer Structures , 1967 .

[166]  R. Frindt The optical properties of single crystals of WSe2 and MoTe2 , 1963 .

[167]  R. Frindt,et al.  Physical properties of layer structures : optical properties and photoconductivity of thin crystals of molybdenum disulphide , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[168]  G. Galli,et al.  Electronic Properties of MoS 2 Nanoparticles , 2022 .