Ranking of Fuzzy Efficiency Measures via Satisfaction Degree

Fuzzy DEA models emerge as another class of DEA models that support subjectivity in eliciting inputs and outputs for decision making units (DMUs). Though several approaches for solving fuzzy DEA models exist, there are some drawbacks, ranging from the inability to provide satisfactory discrimination power to simplistic numerical examples that handle only symmetrical fuzzy numbers. To address these drawbacks, a fuzzy DEA-CCR model using a linear ranking function is proposed to incorporate fuzzy inputs and fuzzy outputs that are asymmetrical in nature. This chapter proposes a ranking method for fuzzy efficiency measures through a formalised fuzzy DEA model.